

1

Steps

AICIP RESEARCH

- Step 1: Transform the data to the format of an SVM package
- Step 2: Conduct simple scaling on the data
- Step 3: Consider the RBF kernel $K(x, y) = e^{-\gamma ||x-y||^2}$
- *Step 4: Select the best parameter C and $\,\mathcal{V}$ to train the whole training set
- Step 5: Test

TENNESSEE

Example

AICIP RESEARCH

- Dataset: pima.tr and pima.te
- Step 1: Transform the data to the format of an SVM package
 - $Ptr \in R^{m \times f}$ (training data: every row is a feature vector)
 - $Pte \in R^{n \times f}$ (testing data: every row is a feature vector)
 - *ltr* (label vector for training data pima.tr)
 - *lte* (label vector for testing data pima.te)

TENNESSEE

Matlab C	Code	AICIP
	% Demonstration of the usage of libSVM on pima data set % Jiajia Luo	RESEARCH
	dear all; dc;	
	% add the path addpath("E:\My Code\SourceCodeInternet\libsvm-3.1\windows");	
	% Step 1: Collect the training and testing dataset fid = fopen('pima.tr.bt'); tr = textscan(fid,%f %f %f %f %f %f %f %f %f %s','HeaderLines',1); fclose(fid);	
	fid = fopen('pima.te.bxt'); te = textscan(fid,'%f %f %f %f %f %f %f %f %f %s','HeaderLines',1); fclose(fid);	
	% Step 2: Generate the feature vectors and labels for tr and te pima_tr = [tr(1) tr(2) tr(3) tr(4) tr(5) tr(6) tr(7)]; pima_tr = [tr(1) tr(2) tr(3) tr(4) tr(5) tr(6) tr(7)]; Nr = size(pima_tr(1); Nr = size(pima_tr(1);	
	Itr = [tr(8)]; Ite = [te(5)]; Iabel_tr = zeros(Ntr,1); Iabel_te = zeros(Ntr,1); for i = 1.Ntr	
	if strcmp(ltr{});/Yes')	
TENNESSEE	end	

	AICIP BESEABCH
for i = 1:Nte	
if strcmp(Ite{i},'Yes')	
label_te(i,1) = 1; elseif strcmp(lte{i}.'No')	
label te(i,1) = 2;	
end 2,	
end	
% Step 3: scale the data	
pima_trs = (pima_tr - repmat(min(pima_tr,[],1),siz	e(pima_tr,1),1))*
spdiags(1./(max(pima_tr,[],1)-	
<pre>min(pima_tr,[],1))',0,size(pima_tr,2),size(pima_tr,2 pima_tes = (pima_te - repmat(min(pima_tr,[],1),si</pre>	
spdiags(1./(max(pima_tr,[],1)-	ze(pinia_ce,1),1))
min(pima_tr,[],1))',0,size(pima_te,2),size(pima_te,	2));
% Step 4: train the data	- 0.10
<pre>model = svmtrain(label_tr, sparse(pima_trs), '-c 16</pre>	-g 0.1);
% Step 5: test the data	
<pre>[predict_labels, accuracy, dec_value_s] = svmpred model);</pre>	ict(label_te, sparse(pima_tes),
% Step 6: Evaluate the performance of using unsc	aled data
model = svmtrain(label_tr, sparse(pima_tr), '-c 2 -	
[predict_label, accuracy, dec_value] = sympredict(
THE UNIVERSITY OF	aber_crysparse(prind_cry/inddel)/