
\qquad
\qquad
\qquad
\qquad
\qquad

$\begin{array}{\|c} \begin{array}{l} \text { Dimensionality } \\ \text { Reduction } \\ \text { FLD, PCA } \end{array} \\ \hline \end{array}$	Performance Evaluation ROC curve $($ re, ru, fr, Fr)	local opt (GD)	Classifier Fusion majority voting NB, BKS

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad support vector machines for pattern recognition," Data Mining and Knowledge Discovery, 2, 121- \qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Generalization and Capacity
- For a given learning task, with a given finite
amount of training data, the best generalization
performance will be achieved if the right balance
is struck between the accuracy attained on that
particular training set, and the "capacity" of the
machine
- Capacity - the ability of the machine to learn any
training set without error
- Too much capacity - overfiting
THENTESSEEE

\qquad
\qquad amount of training data, the best generalization performance will be achieved if the right balance \qquad is struck between the accuracy attained on that \qquad
\qquad
\qquad
\qquad

\qquad

Under what circumstances, and how quickly, the mean of some \qquad
empirical quantity converges uniformly, as the number of data point
increases, to the true mean

- True mean error (or actual risk) \qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

VC Dimension
- For a given set of / points, there can be 2^{\prime} ways to
label them. For each labeling, if a member of the
set $\{f(\alpha)\}$ can be found that correctly classifies
then, we say that set of points is shattered by
that set of functions.
- VC dimension of that set of functions $\{f(\alpha)\}$ is
defined as the maximum number of training
points that can be shattered by $\{f(\alpha)\}$
- We should minimize h in order to minimize the
bound

\qquad
\qquad label them. For each labeling, if a member of the set $\{f(\alpha)\}$ can be found that correctly classifies \qquad
\qquad
VC dimension of that set of functions $\{f(\alpha)\}$ is ning \qquad
We should minimize h in order to minimize the bound
\qquad
\qquad
Example ($f(\alpha)$ is perceptron)

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Non-separable Cases	AICIP RHESEAIRCH
- SVM with soft margin	
- Kernel trick	

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Limitation	AICIP RLSSLALCH
- Need to choose parameters	

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Steps
Step 1: Transform the data to the format of an
SVM package
Step 2: Conduct simple scaling on the data
Step 3: Consider the RBF kernel $K(x, y)=e^{-\gamma\|x-y\|^{2}}$
Step 4: Select the best parameter C and γ to train
the whole training set
Step 5: Test

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
Step 1: Transform the data to the format of an SVM package
\qquad
Ptr $\in R^{m \times /}$ (training data: every row is a feature vector)
ure vector) \qquad
\qquad
\qquad
\qquad

Example	$\begin{aligned} & \text { AICI } \\ & \text { RLES } \end{aligned}$
- Step 2: Data scaling	
Avoid attributes in greater numeric ranges dominating those in smaller numeric ranges	
- How?	
- Calculate the min and max for every feature from the training dataset	
Details pls refer to: htto://www.csie.ntu.edu.tw/~cilin/libsym/faa.htm\|\#f407	
TTuM	

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad a sparse matrix in matlab, required by the
T Ticinivessil

AICIIP RESEARCH

\qquad
\qquad

- Step 4: Test on the trained model
\qquad

1, Pima_tes is the matrix for the scaled features of testing dataset
2, Sparse(pima_tes) is an operation to generate a sparse 2, Sparse(pima_tes) is an operation to generate
matrix in matlab, required by the libsvm packag

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad

