
day month year documentname/initials 1

ECE471-571 – Pattern Recognition

Lecture 17: Support Vector Machine

Hairong Qi, Gonzalez Family Professor
Electrical Engineering and Computer Science
University of Tennessee, Knoxville
http://www.eecs.utk.edu/faculty/qi

Email: hqi@utk.edu

Pattern Classification

Statistical Approach Non-Statistical Approach

Supervised Unsupervised
Basic concepts:

Distance
Agglomerative method

Basic concepts:
Baysian decision rule
(MPP, LR, Discri.)

Parameter estimate (ML, BL)

Non-Parametric learning (kNN)

LDF (Perceptron)

k-means

Winner-takes-all

Kohonen maps

Dimensionality
Reduction

FLD, PCA

Performance Evaluation
ROC curve (TP, TN , FN , FP)
cross validation

Classifier Fusion
majority voting
NB, BKS

local opt (GD)

Decision-tree

Syntactic approach

NN (BP)

Support Vector Machine

Deep Learning (DL)

Mean-shift

• Reference: Christopher J.C. Burges, “A tutorial on
support vector machines for pattern recognition,”
Data Mining and Knowledge Discovery, 2, 121-
167, 1998

3

http://www.eecs.utk.edu/faculty/qi

day month year documentname/initials 2

A bit about Vapnik

• Started SVM study in late 70s
• Fully developed in late 90s
• While at AT&T lab

4http://en.wikipedia.org/wiki/Vladimir_Vapnik

Generalization and Capacity

• For a given learning task, with a given finite
amount of training data, the best generalization
performance will be achieved if the right balance
is struck between the accuracy attained on that
particular training set, and the “capacity” of the
machine

• Capacity – the ability of the machine to learn any
training set without error

– Too much capacity - overfitting

5

Bounds on the Balance

Under what circumstances, and how quickly, the mean of some
empirical quantity converges uniformly, as the number of data point
increases, to the true mean
True mean error (or actual risk)

One of the bounds

6

R α() = 1
2 y− f x,α()∫ p x, y()dxdy

R α() ≤ Remp α()+ h log 2l/h()+1()−log η/4()
l() Remp α() = 1

2l
yi − f xi,α()

i=1

l

∑

f(x,a): a machine that defines a set of mappings, xàf(x,a)
a: parameter or model learned
h: VC dimension that measures the capacity. non-negative integer
Remp: empirical risk
h: 1-h is confidence about the loss, h is between [0, 1]
l: number of observations, yi: label, {+1, -1}, xi is n-D vector

Principled method: choose a learning machine that minimizes the RHS
with a sufficiently small h

day month year documentname/initials 3

7

VC Dimension

• For a given set of l points, there can be 2l ways to
label them. For each labeling, if a member of the
set {f(a)} can be found that correctly classifies
them, we say that set of points is shattered by
that set of functions.

• VC dimension of that set of functions {f(a)} is
defined as the maximum number of training
points that can be shattered by {f(a)}

• We should minimize h in order to minimize the
bound

8

Example (f(a) is perceptron)
SUPPORT VECTOR MACHINES 125

Figure 1. Three points in R2, shattered by oriented lines.

Let’s now consider hyperplanes in Rn. The following theorem will prove useful (the
proof is in the Appendix):

Theorem 1 Consider some set ofm points inRn. Choose any one of the points as origin.
Then the m points can be shattered by oriented hyperplanes5 if and only if the position
vectors of the remaining points are linearly independent6.

Corollary: The VC dimension of the set of oriented hyperplanes inRn is n+1, since we
can always choose n + 1 points, and then choose one of the points as origin, such that the
position vectors of the remaining n points are linearly independent, but can never choose
n + 2 such points (since no n + 1 vectors in Rn can be linearly independent).
An alternative proof of the corollary can be found in (Anthony and Biggs, 1995), and

references therein.

2.3. The VC Dimension and the Number of Parameters

The VC dimension thus gives concreteness to the notion of the capacity of a given set
of functions. Intuitively, one might be led to expect that learning machines with many
parameters would have high VC dimension, while learning machines with few parameters
would have low VC dimension. There is a striking counterexample to this, due to E. Levin
and J.S. Denker (Vapnik, 1995): A learning machine with just one parameter, but with
infinite VC dimension (a family of classifiers is said to have infinite VC dimension if it can
shatter l points, no matter how large l). Define the step function θ(x), x ∈ R : {θ(x) =
1 ∀x > 0; θ(x) = −1 ∀x ≤ 0}. Consider the one-parameter family of functions, defined
by

f(x, α) ≡ θ(sin(αx)), x, α ∈ R. (4)

You choose some number l, and present me with the task of finding l points that can be
shattered. I choose them to be:

9

day month year documentname/initials 4

Linear SVM – The Separable
Case

SUPPORT VECTOR MACHINES 129

-b
|w|

w

Origin

Margin

H1

H2

Figure 5. Linear separating hyperplanes for the separable case. The support vectors are circled.

xi · w+ b ≥ +1 for yi = +1 (10)
xi · w+ b ≤ −1 for yi = −1 (11)

These can be combined into one set of inequalities:

yi(xi · w+ b) − 1 ≥ 0 ∀i (12)

Now consider the points for which the equality in Eq. (10) holds (requiring that there
exists such a point is equivalent to choosing a scale for w and b). These points lie on the
hyperplaneH1 : xi ·w+ b = 1 with normal w and perpendicular distance from the origin
|1 − b|/∥w∥. Similarly, the points for which the equality in Eq. (11) holds lie on the
hyperplane H2 : xi · w+ b = −1, with normal again w, and perpendicular distance from
the origin | − 1 − b|/∥w∥. Hence d+ = d− = 1/∥w∥ and the margin is simply 2/∥w∥.
Note that H1 and H2 are parallel (they have the same normal) and that no training points
fall between them. Thus we can find the pair of hyperplanes which gives the maximum
margin by minimizing ∥w∥2, subject to constraints (12).
Thus we expect the solution for a typical two dimensional case to have the form shown in

Figure 5. Those training points for which the equality in Eq. (12) holds (i.e. those which
wind up lying on one of the hyperplanes H1, H2), and whose removal would change the
solution found, are called support vectors; they are indicated in Figure 5 by the extra circles.
We will now switch to a Lagrangian formulation of the problem. There are two reasons

for doing this. The first is that the constraints (12) will be replaced by constraints on the
Lagrange multipliers themselves, which will be much easier to handle. The second is that
in this reformulation of the problem, the training data will only appear (in the actual training
and test algorithms) in the form of dot products between vectors. This is a crucial property
which will allow us to generalize the procedure to the nonlinear case (Section 4).
Thus, we introduce positive Lagrange multipliers αi, i = 1, · · · , l, one for each of the

inequality constraints (12). Recall that the rule is that for constraints of the form ci ≥ 0, the
constraint equations are multiplied by positive Lagrange multipliers and subtracted from

10

xi •w+ b =1

xi •w+ b = −1

Decision boundary:
w•x+ b = 0

Support
vectors

11

xi •w+ b ≥1 for yi = +1
xi •w+ b ≤ −1 for yi = −1

$
%
&

'&

Minimizing w 2

s.j. yi xi •w+ b()−1≥ 0

Minimize LP = 1
2 w

2
− αi yi xi •w+ b()+ αi

i=1

l

∑
i=1

l

∑

∂LP
∂w

= 0 ⇒ w = αi yixi
i
∑ , ∂LP

∂b
= 0 ⇒ αi yi

i
∑ = 0

Maximize LD = − 1
2 αiα j yiyjxix j
i, j
∑ + αi

i
∑

Non-separable Cases

• SVM with soft margin
• Kernel trick

12

day month year documentname/initials 5

Non-separable Case – Soft
Margin

13

xi •w+ b ≥1−ξi for yi = +1
xi •w+ b ≤ −1+ξi for yi = −1

$
%
&

'&
 for ξi ≥ 0

Minimizing w 2

s.j. yi xi •w+ b()−1+ξi ≥ 0

Minimize LP = 1
2 w

2
−C ξi

i
∑
)

*
+

,

-
.

k

Maximize LD = − 1
2 αiα j yiyjxix j
i, j
∑ + αi

i
∑

s.j. 0 ≤αi ≤C, αi yi
i
∑ = 0

Non-separable Cases – Kernel
Trick
• If there were a “kernel function”, K, s.t.

14

K xi,x j() =Φ xi() ⋅Φ x j() = e
− xi−x j

2

2σ 2

Gaussian Radial Basis Function (RBF)

Comparison - XOR

15

day month year documentname/initials 6

Limitation

• Need to choose parameters

16

Packages

• libSVM
– Use one-against-one (1a)

• SVMlight

17

Package Installation

• Download:
http://www.csie.ntu.edu.tw/~cjlin/libsvm/

• Installation (Three choices)
– On Unix systems, type `make' to build the `svm-

train' and `svm-predict‘ programs.
– On other systems, consult `Makefile' to build them
– Use the pre-built binaries (Windows binaries are

in the directory ‘windows').
– More details pls refer to the README file

http://www.csie.ntu.edu.tw/~cjlin/libsvm/

day month year documentname/initials 7

Steps

Step 1: Transform the data to the format of an
SVM package
Step 2: Conduct simple scaling on the data
Step 3: Consider the RBF kernel
Step 4: Select the best parameter and to train
the whole training set
Step 5: Test

()
2

, yxyx --= geK

C g

Example

• Dataset: pima.tr and pima.te
• Step 1: Transform the data to the format of an

SVM package
– (training data: every row is a feature vector)
– (testing data: every row is a feature vector)
– (label vector for training data pima.tr)
– (label vector for testing data pima.te)

fmRPtr ´Î
fnRPte ´Î

ltr
lte

Example

• Step 2: Data scaling
– Avoid attributes in greater numeric ranges dominating

those in smaller numeric ranges
– Avoid numerical difficulties during the calculation

• How?
– Calculate the min and max for every feature from the

training dataset
– For every feature (train or test) f, the scaled feature fs

can be calculated by fs = (f-min)/(max-min)
Details pls refer to:
http://www.csie.ntu.edu.tw/~cjlin/libsvm/faq.html#f407
http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf

http://www.csie.ntu.edu.tw/~cjlin/libsvm/faq.html
http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf

day month year documentname/initials 8

Example

• Step 3: Train SVM on given parameters

model = svmtrain(ltr, sparse(pima_trs), '-c 16 , -g 0.1');

Penalty
parameter

Parameter for
the kernel
function RBF

1, Pima_trs is the matrix for the scaled features
of training dataset
2, Sparse(pima_trs) is an operation to generate
a sparse matrix in matlab, required by the
libsvm package

Label vector
for training
dataset

Trained
model

Example

• Step 4: Test on the trained model
[predict_labels, accuracy, dec_values] = svmpredict(lte, sparse(pima_tes), model);

Label vector for
testing dataset

1, Pima_tes is the matrix for the scaled features of
testing dataset
2, Sparse(pima_tes) is an operation to generate a sparse
matrix in matlab, required by the libsvm package

Trained
model

The predicted
labels for testing
dataset

Recognition
accuracy for the
testing dataset

Decision values
used to
classification

Example

• Result:
– Scaled:

– Accuracy = 80.1205% (266/332)
– Non-scaled:

– Accuracy = 66.8675% (222/332)

day month year documentname/initials 9

Matlab Code
% Demonstration of the usage of libSVM on pima data set
% Jiajia Luo

clear all;
clc;

% add the path
addpath('E:\My Code\SourceCodeInternet\libsvm-3.1\windows');

% Step 1: Collect the training and testing dataset

fid = fopen('pima.tr.txt');
tr = textscan(fid,'%f %f %f %f %f %f %f %s','HeaderLines',1);
fclose(fid);

fid = fopen('pima.te.txt');

te = textscan(fid,'%f %f %f %f %f %f %f %s','HeaderLines',1);
fclose(fid);

% Step 2: Generate the feature vectors and labels for tr and te
pima_tr = [tr{1} tr{2} tr{3} tr{4} tr{5} tr{6} tr{7}];

pima_te = [te{1} te{2} te{3} te{4} te{5} te{6} te{7}];
Ntr = size(pima_tr,1);
Nte = size(pima_te,1);

ltr = [tr{8}];
lte = [te{8}];

label_tr = zeros(Ntr,1);
label_te = zeros(Nte,1);
for i = 1:Ntr

if strcmp(ltr{i},'Yes')
label_tr(i,1) = 1;

elseif strcmp(ltr{i},'No')
label_tr(i,1) = 2;

end

end

for i = 1:Nte

if strcmp(lte{i},'Yes')

label_te(i,1) = 1;

elseif strcmp(lte{i},'No')

label_te(i,1) = 2;

end

end

% Step 3: scale the data

pima_trs = (pima_tr - repmat(min(pima_tr,[],1),size(pima_tr,1),1))*...

spdiags(1./(max(pima_tr,[],1)-

min(pima_tr,[],1))',0,size(pima_tr,2),size(pima_tr,2));

pima_tes = (pima_te - repmat(min(pima_tr,[],1),size(pima_te,1),1))*...

spdiags(1./(max(pima_tr,[],1)-

min(pima_tr,[],1))',0,size(pima_te,2),size(pima_te,2));

% Step 4: train the data

model = svmtrain(label_tr, sparse(pima_trs), '-c 16 -g 0.1');

% Step 5: test the data

[predict_labels, accuracy, dec_value_s] = svmpredict(label_te, sparse(pima_tes),

model);

% Step 6: Evaluate the performance of using unscaled data

model = svmtrain(label_tr, sparse(pima_tr), '-c 2 -g 0.1');

[predict_label, accuracy, dec_value] = svmpredict(label_te, sparse(pima_te), model);

