Lectu	

Recap

Discrete-Tim Signals

Digital Signal Processing Lecture 2 - Discrete-Time Signals

Electrical Engineering and Computer Science University of Tennessee, Knoxville

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

	Overview
Lecture 2	
Recap	
Discrete-Time Signals	
	1 Recap
	2 Discrete-Time Signals

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□▶

	Recap
Lecture 2	
Recap	
Discrete-Time Signals	 Essential components of DSP Frequency analysis Sampling Filter Different types of signals continuous vs. discrete vs. digital deterministic vs. random
	Interesting applications of sinusoids

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□▶

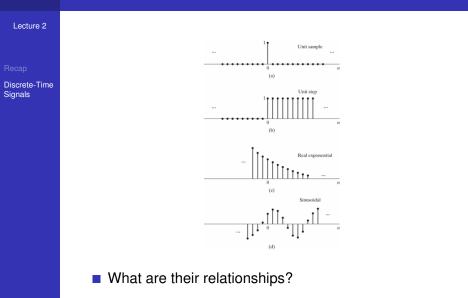
Basic sequences

Lecture 2

Recap

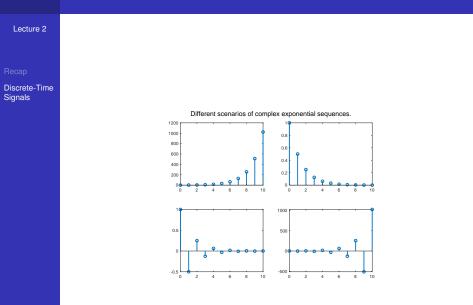
Discrete-Time Signals Unit sample sequence (or impulse sequence): $\delta[n] = \begin{cases} 0, & n \neq 0, \\ 1, & n = 0 \end{cases}$

• Unit step sequence: $u[n] = \begin{cases} 1, & n \ge 0, \\ 0, & n < 0 \end{cases}$


Exponential sequence: $x[n] = A\alpha^n$

- real sequence
- complex sequence

Sinusoid sequence: $x[n] = A\cos(\omega_0 n + \phi)$


◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ ��や

Exponential sequences

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ ��や

On definition

Lecture 2

Recap

Discrete-Time Signals

δ(t) vs. δ[n]
Properties of the δ functions

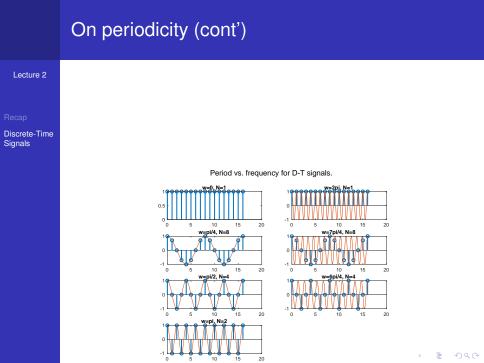
◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

On periodicity

Lecture 2

Recap

Discrete-Time Signals Continuous-time periodic signals: x(t) = x(t + T)


- Discrete-time periodic signals: x[n] = x[n + N]
- Exercises: What is the period of the following signals

$$\quad \mathbf{x}[n] = \cos(\pi n/8)$$

- $x[n] = \cos(\pi n/4)$
- $x[n] = \cos(\pi n)$
- $\quad x[n] = \cos(7\pi n/4)$

Questions:

- Is it always true that the higher the frequency, the lower the period?
- Is it true that the sinusoidal sequence is always periodic?

