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Introduction
Three components of DSP
Clarifications: Discrete-time vs. Digital

Discrete-time signals
unit sample (impulse), unit step, exponential sequences
relationships
periodicity of sinusoidal sequences
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A general system and an LTI system

y [n] = T{x [n]}
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Linearity

A system is linear iff

T{ax1[n] + bx2[n]} = aT{x1[n]}+ bT{x2[n]}

Homogeneity or scaling or multiplicative property
Additivity property

Delay
by n0

System
x(n-n0)x(n) w(n)

System
y(n) Delay

by n0

y(n-n0)

System
x1(n) y1(n)

System
y2(n)

+
w(n)X

α

X

β
x2(n)

x1(n)

x2(n)
+

x(n)X

α

X

β System
y(n)

w [n] needs to be equal to y [n]
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Time-invariance (or shift-invariance)

For time-invariant systems, the input-output
characteristics do not change over time, i.e.,

x [n] −→ y [n] implies x [n − n0] −→ y [n − n0]

Delay
by n0

System
x(n-n0)x(n) w(n)

System
y(n) Delay

by n0

y(n-n0)

System
x1(n) y1(n)

System
y2(n)

+
w(n)X

α

X

β
x2(n)

x1(n)

x2(n)
+

x(n)X

α

X

β System
y(n)

w [n] needs to be equal to y [n − n0]
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The convolution sum

The unit sample response uniquely characterizes the
system.
If δ[n]→ h[n], then δ[n − k ]→ h[n − k ].

x [n] =
∑

x [k ]δ[n − k ]

y [n] =
∑

x [k ]h[n − k ] = x [n] ∗ h[n]

Convolution sum is commutative.

y [n] =
∑

r

x [n − r ]h[r ] = h[n] ∗ x [n]
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Stability

A system is said to be bounded-input bounded-output
(BIBO) stable iff every bounded input produces a
bounded output. i.e., there exist some finite numbers,
Bx and By , s.t.

|x [n]| ≤ Bx <∞, |y [n]| ≤ By <∞

for all n.
Abosolutely summable: For LTI, if |x [n]| <∞, to have
|y [n]| <∞, we need to have

∞∑
k=−∞

|h[k ]| <∞
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Causality

The output of a causal system at any time n depends
only on present and past inputs, i.e.,
x [n], x [n − 1], x [n − 2], · · · , but not on future inputs, i.e.,
x [n + 1], x [n + 2], · · ·
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Static (or memoryless) vs. Dynamic (or with
memory) systems

For a static system, at any instant n, the output of the
system only depends, at most, on the input sample at
the same time: y [n] = T (x [n])
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Exercises

y [n] = x [2n]

y [n] = x [−n]

y [n] = ax [n] + b

y [n] = ex [n]

y [n] = x [n] cosω0n,

h[n] = 2nu[−n]

h[n] = 2nu[n]

h[n] = (
1
2
)nu[n]
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Linear constant-coefficient difference equation
(LCDE)

Nth order LCDE
N∑

k=0

aky [n − k ] =
M∑

m=0

bmx [n −m]

When N = 0,a0 = 1, i.e., 0-th order LCDE

y [n] =
M∑

k=0

bkx [n − k ]

That is,

h[n] =
{

bn, n = 0,1, · · · ,M
0, otherwise

=
M∑

k=0

bkδ[n − k ]

When N 6= 0,a0 = 1

y [n] =
M∑

m=0

bmx [n −m]−
N∑

k=1

aky [n − k ]
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Initial conditions

The homogeneous solution, yh[n]

y [n] = yp[n] + yh[n]

N∑
k=0

akyh[n − k ] = 0→ yh[n] =
N∑

m=1

Amzn
m

If a system is characterized by an LCDE and is further
specified to be linear, time-invariant, and causal, then
the solution is unique. These auxiliary conditions are
referred to as the initial-rest conditions. That is, if
x [n] = 0 for n < n0, then y [n] = 0 for n < n0.
Note that not for every set of boundary conditions that
LCDE would correspond to an LTI system.
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Exercises

y [n]− ay [n − 1] = x [n]

Suppose x [n] = δ[n]
assume y [n] = 0,n < 0
assume y [n] = 0,n > 0
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Eigenfunctions for LTI systems

Complex exponentials are eigenfunctions of LTI
systems and the frequency response is the eigenvalue
of LTI systems.
Let x [n] = ejωn, then

y [n] =
∞∑

k=−∞
h[k ]x [n−k ] =

∞∑
k=−∞

h[k ]ejω(n−k) = ejωn
∑

k

h[k ]e−jωk

Let H(ejω) =
∑

k h[k ]e−jωk , then

y [n] = H(ejω)ejωn

Frequency response is the eigenvalue of the system:

H(ejω) =
∑

k

h[k ]e−jωk

Properties of frequency response:
Function of continuous variable ω
Periodic function of ω with period of 2π
Generalization of frequency response: the Fourier
transform
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Exercises

Find the output to x [n] = A cos(ω0n + φ)

Find the frequency response to y [n]− ay [n − 1] = x [n]
Find the output to x [n] = ejωnu[n] (suddenly applied
exponential input)
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Fourier-series expansion

H(ejω) is a continuous periodic function and would
have a Fourier series representation
H(ejω) has a Fourier-series expansion in terms of
complex exponentials
The Fourier series coefficients then become the values
of the unit sample response

H(ejω) =
∑

n

h[n]e−jωn

h[n] =
1

2π

∫ π

−π
H(ejω)ejωndω
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Fourier Transform

Frequency-domain representation of arbitrary
sequence x [n]

X (ejω) =
∞∑

n=−∞
x [n]e−jωn

x [n] =
1

2π

∫ π

−π
X (ejω)ejωndω
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The convolution property

x [n] ∗ y [n]↔ X (ejω)Y (ejω)

ejω0n → H(ejω0)ejω0n∑
k

Akejωk n →
∑

k

AkH(ejωk )ejωk n

x [n] =
1

2π

∫ π

−π
X (ejω)ejωndω

A decomposition of x [n] as a linear combination of
complex exponentials

y [n] =
1

2π

∫ π

−π
X (ejω)H(ejω)ejωndω

Y (ejω) = X (ejω)H(ejω)

y [n] = x [n] ∗ h[n]
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The symmetry property

For real sequences x [n], the symmetry property indicates
that the FT of x [n] is a conjugate symmetric function of ω

X (ejω) = X ∗(e−jω)

Other useful properties:
The real part of the FT is an even function:
XR(ejω) = XR(e−jω)

The imaginary part of the FT is an odd function:
XI(ejω) = −XI(e−jω)

The amplitude of the FT is an even function: |X (ejω)|
The phase of the FT is an odd function X (ejω)
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