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Recap - Discrete-time systems

Special properties: linearity, TI, stability, causality
LTI systems: the unit sample response h[n] uniquely
characterizes an LTI system

y [n]=
∑∞

k=−∞ x [k ]h[n−k ]=x [n]∗h[n]

Linear constant-coefficient difference equation: the solution
is unique only with the initial-rest conditions

∑N
k=0 ak y [n−k ]=

∑M
m=0 bmx [n−m]

Frequency response: H(ejω), complex exponentials are
eigenvalues of LTI systems, i.e., if x [n] = ejωn,

y [n]=H(ejω)x [n]=(
∑∞

k=−∞ h[k ]e−jωk )ejωn

Fourier transform: Generalization of frequency response (a
periodic continous function of ω)

X(ejω)=
∑∞

n=−∞ x [n]e−jωn,x [n]= 1
2π

∫ π
−π X(ejω)ejωndω
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Issue of convergence

X (ejω) =
∞∑

n=−∞
x [n]e−jωn (1)

|X (ejω)| = |
∞∑

n=−∞
x [n]e−jωn| ≤

∑
n

|x [n]||e−jωn| (2)

=
∑

n

|x [n]| (3)

X (ejωn) converges if
∑
|x [n]| <∞, that is, x [n] is

absolutely summable.
Recall: if h[n] is absolutely summable, the system is
stable, or H(ejω) converges
E.g.: x [n] = (1

2)
nu[n], x [n] = 2nu[n]
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Definition of the z-transform

x [n]→ x [n].r−n, where r−n is a decay function

Xr (ejω) =
∑

n

(x [n]r−n)e−jωn =
∑

n

x [n](rejω)−n

Define a new complex variable, z = rejω

The z-transform: X (z) =
∑∞

n=−∞ x [n]z−n, X (z)
converges if

∑∞
n=∞ |x [n]r−n| <∞

Relationship with FT: X (ejω) = X (z)|z=ejω or
X (ejω) = X (z)||z|=1

E.g.: x [n] = (1
2)

nu[n], does the z-transform exist? does
the FT exist?
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The z-plane, the pole-zero plot

Sum of exponentials of a sequence results in
z-transforms that are ratios of polynomials in z
Zeros of polynomial: roots of the numerator polynomial
Poles of polynomial: roots of the denominator
polynomial
|z| = 1 (or unit circle) is where the Fourier transform
equals to the z-transform
MATLAB function: zplane.
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Region of convergence

E.g.:

x [n] = −(1
2
)nu[−n − 1] (4)

x [n] = (
1
2
)nu[n] (5)

x [n] = an for 0 ≤ n ≤ N − 1 (6)

Region of convergence (R of C): the z-transform exists
only for those values of z where X (z) converges.
Observations:

The z-transform is defined by function of z and also the
R of C.
There won’t be any poles in the R of C
R of C is bounded by poles or 0 or∞
FT exists only when the R of C includes |z| = 1
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Different cases

Finite length sequence: 0 < |z| <∞
Right-sided sequence: x [n] = 0 for n < n1

Rx− < |z| <∞

where Rx− must be the outermost pole in the z-plane
Left-sided sequence: x [n] = 0 for n > n1

0 < |z| < Rx+

where Rx+ is the innermost pole
Two-sided sequence: Rx− < |z| < Rx+ where Rx− and
Rx+ are the two poles that are adjacent on the z-plane.

R of C (|a| < 1, |b| > 1) does FT exist which sided
|z| < a

a < |z| < b
|z| > b
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System function

y [n] = x [n] ∗ h[n]

Y (z) = X (z)H(z)→ H(z) =
Y (z)
X (z)

H(z) is the system function
when system is stable?
when system is causal?
E.g., What’s the system function for
y [n]− 1

2y [n − 1] = x [n]?
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Properties of the z-transform

Linearity?
Time-delay property?

What does z−1 indicate?
Unit delay property of z-transforms

x [n − 1]⇐⇒ z−1X (z)

Example: What is z−1x [n]
n n<-1 -1 0 1 2 3 4 5 n>5

x[n] 0 0 2 4 6 4 2 0 0
Time delay of n0 samples multiplies the z-transform by
z−n0

x [n − n0]⇐⇒ z−n0X (z)
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z-transform as an operator

Unit-delay operator

y [n] = D{x [n]} = x [n − 1]

If the input is x [n] = zn,

y [n] = D{x [n]} = D{zn} = zn−1 = z−1x [n] = z−1{x [n]}

What is the operator for the first difference?
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Convolution and the z-transform

Convolution in the time domain corresponds to
multiplication in the z-domain

y [n] = h[n] ∗ x [n]⇐⇒ Y (z) = H(z)X (z)

Calculate the output in the z-domain

x [n] = δ[n − 1]− δ[n − 2] + δ[n − 3]− δ[n − 4]
h[n] = δ[n] + 2δ[n − 1] + 3δ[n − 2] + 4δ[n − 3]
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Cascading systems

The system function for a cascade of two LTI systems
is the product of the individual system functions.

h[n] = h1[n] ∗ h2[n]⇐⇒ H(z) = H1(z)H2(z)

Consider a system described by the difference
equations

w [n] = 3x [n]− x [n − 1], y [n] = 2w [n]− w [n − 1]

that represents a cascade of two first-order systems.
How to calculate the output?
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Factoring the z-polynomials

We can factor z-transform polynomials to break down a
large system into smaller modules. The factors of a
high-order H(z) would represent component systems
that make up H(z) in a cascade connection
Decompose H(z) = 1− 2z−1 + 2z−2 − z−3 into
lower-order cascading systems to help understand the
characteristics of the system
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Significance of the zeros of H(z)

The zeros of the system function that lie on the unit
circle correspond to frequencies at which the gain of
the system is zero. Thus, complex sinusoids at those
frequencies are blocked or nulled by the system.
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Significance of the zeros of H(z) (cont’)

Exercise: H(z) = 1− 2z−1 + 2z−2 − z−3. What does
the pole-zero plot indicate? or what kind of input
signals would generate a zero output?
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Application example: eliminate jamming signal in a
radar or communications system or eliminate the 60 Hz
interference from a power line
Exercise: How to remove signal x [n] = cos(ωn)?
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Nulling filters

If we want to eliminate a sinusoidal input signal, we
would have to remove two signals of the form zn

1 + zn
2

x [n] = cos(ωn) =
1
2

ejωn +
1
2

e−jωn

with two cascading first-order FIR filters. The
second-order FIR filter will have two zeros at z1 = ejω

and z2 = e−jω.
To eliminate the first component in x [n], we need a filter
with system function H1(z) = 1− z1z−1, and for the
second component, a system function of
H2(z) = 1− z2z−1, such that

H(z) = H1(z)H2(z) = (1− z1z−1)(1− z2z−1)
= 1− 2 cosωz−1 + z−2
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Revisit - the pole-zero plot vs. the frequency
response
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H(z) = 1 − 2z−1 + 2z−2 − z−3
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H(z) = 1 − 2cos(w)z−1 + z−2

−5 0 5
0

1

2

3

4

A
m

pl
itu

de

w



Lecture 4

Recap

Definition

R of C

System
Function

Properties

Useful Filters
Bandpass

Inverse z

Supplement

Outline

1 Recap

2 Definition

3 R of C

4 System Function

5 Properties

6 Useful Filters
Bandpass

7 Inverse z

8 Supplement



Lecture 4

Recap

Definition

R of C

System
Function

Properties

Useful Filters
Bandpass

Inverse z

Supplement

The L-point running sum filter

y [n] =
L−1∑
k=0

x [n − k ],H(z) =
L−1∑
k=0

z−k =
1− z−L

1− z−1

Exercise: What are the roots?
A 10-point running-sum filter L = 10
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10−point running−sum
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bandpass at k=2
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Why only 9 poles?
Why missing a zero at z = 1?
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Complex bandpass filters

We can control the frequency response of an FIR filter
by placing its zeros on the unit circle
Move the passband to a new location with a specified
frequency, e.g., ω = 2πk0/L

H(z) =
L−1∏

k=0,k 6=k0

(1− ej2πk/Lz−1)

the index k0 denotes the one omitted root at z = ej2πk0/L

What would the pole-zero plot look like?
What would the frequency response look like?
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Complex bandpass filters (cont’)
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10−point running−sum
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bandpass at k=2
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Complex bandpass filters - the filter coefficient?

A rotation of the zeros by the angle, 2πk0/L, is
equivalent of shifting the frequency response along the
ω-axis by the amount of the rotation.
Consider H(z) = G(z/r)

The effect of replacing z in G(z) with z/r is to multiply
the roots of G(z) by r and make these the roots of H(z).
When r is a complex exponential, this will rotate the
complex number through the angle specified.

G(z) =
L−1∑
k=0

z−k , r = ej2πk0/L

H(z) = G(z/r) = G(ze−j2πk0/L) =
∑L−1

k=0 z−k ej2πk0k/L

bk = ej2πk0k/L for k = 0,1, · · · ,L− 1
H(ejω) =

∑L−1
k=0 ej2πk0k/Le−jωk
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Bandpass filters with real coefficients

bk = <{ej2πk0k/L} = cos(2πk0k/L)

H(z) =
L−1∑
k=0

(cos(2πk0k/L))z−k = H1(z) + H2(z)
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bandpass with real coefficients at k=2
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Bandpass filters with real coefficients (cont’)

H(z) =
∑L−1

k=0(
1
2ej2πk0k/Lz−k + 1

2e−j2πk0k/Lz−k )

= 1
2

1−z−L

1−pz−1 + 1
2

1−z−L

1−p∗z−1

= 1
2

zL−1
zL−1(z−p) +

1
2

zL−1
zL−1(z−p∗)

= 1
2
(zL−1)(z−p∗)+(zL−1)(z−p)

zL−1(z−p)(z−p∗)

where p = ej2πk0/L
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The inverse z-transform

Formal method - Contour Integration

x [n] =
1

2πj

∮
C

X (z)zn−1dz

where C represents a closed contour within the ROC of
the z-transform.
Informal methods

Inspection method
Power series
Partial fraction expansion
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Inspection method

anu[n]↔ 1
1− az−1 , for |z| > |a|

−anu[−n − 1]↔ 1
1− az−1 , for |z| < |a|
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Power series

The z-transform is a power series in z.
X (z) =

∑∞
n=−∞ x [n]zn

Examples:
1 X (z) = z2(1− 1

2 z−1)(1 + z−1)(1− z−1)

2 X (z) = log(1 + az−1), for |z| > |a|
3 X (z) = 1

1−az−1

4 X (z) = 1
1−1.5z−1+0.5z−2 for (a) ROC: |z| > 1, (b) ROC:

|z| < 0.5
Note: If x [n] is a causal sequence, we should seek a power
series expansion in negative power of z, then the component
of the highest order of z−1 should be at the rightmost
position of the denominator; If x [n] is not a causal sequence,
we should seek a power series expansion in positive power
of z, then we should reverse the order of denominator and
the the component with the highest order of z−1 should be at
the leftmost position.
Drawbacks: No closed-form expression
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Partial fraction expansion

Extension to the inspection method
F (x) = P(x)

Q(x) =
∑N

k=1
Rk

x−xk
where Rk is the residue

The expansion is true with the following two conditions
Order of P(x) is less than the order of Q(x)
No multiple-order roots

Rr = F (x)(x − xr )|(x=xr )
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Examples

1 X (z) = 1
(1− 1

2 z−1)(1− 1
4 z−1)

for |z| > 1
2

2 X (z) = 1+3z−1+ 11
6 z−2+ 1

3 z−3

1+ 5
6 z−1+ 1

6 z−2 . Note that X (z) is an

improper rational function where the order the
numerator is larger than that of the denominator. Use
long division with the two polynomials written in
“reverse order” to convert it to the sum of a polynomial
and a proper rational function.
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Examples (cont’)

1 X (z) = 1+z−1

1−z−1+0.5z−2 . Note that the two residues are
actually complex conjugate pairs. This is a
consequence of the fact that the poles are complex
conjugate pairs. That is, complex-conjugate poles
result in complex-conjugate coefficients in the partial
fraction expansion. For example, suppose
X (z) = A1

1−p1z−1 + A2
1−p2z−1 where A1 = A∗2 and p1 = p∗2,

then

x [n] = A1(p1)
nu[n] + A2(p2)

nu[n] (7)

= [|A1|ej∠A1(|p1|ej∠p1)n + |A2|ej∠A2(|p2|ej∠p2)n]u[n]
(8)

= |A1||p1|n cos(∠A1 + n∠p1)u[n] (9)
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Examples (cont’)

1 X (z) = 1
(1+z−1)(1−z−1)2 . Note that X (z) has multiple

order poles. So you should find the coefficients for
X (z) = A1

1+z−1 + A2
1−z−1 + A3

(1−z−1)2
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Sum of geometric series

Sum of infinite terms in a geometric series

∞∑
k=0

Ak =
1

1− A
, if |A| < 1

Sum of the first L terms of a geometric series

L−1∑
k=0

Ak =
1− AL

1− A
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