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Roadmap

Lecture 8 Introduction

m Discrete-time signals and systems - LTI systems
m Unit sample response A[n]: uniquely characterizes an
LTI system
m Linear constant-coefficient difference equation
m Frequency response: H(e')
m Complex exponential being eigenfunction of an LTI
system: y[n] = H(&*)x[n] and H(e') as eigenvalue.
m z transform
m The z-transform, X(z) =>",2___ x[n]z™"
m Region of convergence - the z-plane
m System function, H(z)
m Properties of the z-transform
m The significance of zeros
m The inverse z-transform, x[n] = 2%/ $c X(2)z"1dz:
inspection, power series, partial fraction expansion
m Sampling and Reconstruction
m Transform domain analysis - nwz



Review - Design structures

Lecture 8 m Different representations of causal LTI systems
m LCDE with initial rest condition
m H(z) with |z] > R, and startsatn=0
m Block diagram vs. Signal flow graph and how to determine
system function (or unit sample response) from the graphs
m Design structures
m Direct form | (zeros first)
m Direct form Il (poles first) - Canonic structure
m Transposed form (zeros first)
m IIR: cascade form, parallel form, feedback in IR (computable
vs. noncomputable)
m FIR: direct form, cascade form, parallel form, linear phase
m Metric: computational resource and precision
m Sources of errors: coefficient quantization error, input
quantization error, product quantization error, limit cycles
m Pole sensitivity of 2nd-order structures: coupled form
m Coefficient quantization examples: direct form vs.
cascade form



Rationale
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m Review of complex exponentials as eigenfunctions of
Introduction the LTI

m x[n] = &7 — y[n] = H(&/“0)glwon
m or x[n] = coswon — y[n] = |[H(&/*°)| cos(won + 6)

m Separation of signal when they occupate different
frequency bands — choose the system function that is
unity at selective frequencies

m Given a set of specifications, design a rational transfer
function that approximates the ideal filter maintaining
specifications of 6y, ds, and the transition band.



Stages of digital filter design
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Introduction m The specification of the desired properties of the
system

m application-dependent
m usually done in the frequency domain
m The approximation of the specifications using a causal
discrete-time system
m The realization of the system
m e.g., DSP board



Practical frequency-selective filters
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m Approximate ideal filters by a rational function or LCDE
|H(elo)l
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m Factors that affect the filter performance

m the maximum tolerable passband ripple, 20 logq dp
the maximum tolerable stopband ripple, 20 log, ds
the passband edge frequency wp
the stopband edge frequency ws
M and N: order of the LCDE



Example
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m Design a discrete-time lowpass filter to filter a
continuous-time signal with the following specs (with a
sampling rate of 10* samples/s):

m The gain should be within +0.01 of unity in the
frequency band 0 < Q < 27(2000)
m The gain should be no greater than 0.001 in the
frequency band 27(3000) < Q
m Parameter setup
B 0p1 = 0pe = 0.01, 65 = 0.001

wp = 27(2000)/10*, ws = 27(3000)/10*

Ideal passband gain in decibels?

maximum passband gain in decibels?

maximum stopband gain in decibels?

Introduction



Design techniques for IIR filters
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m Analytical — closed-form solution of transfer function
m Continuous-time — Discrete-time
m Algorithmic




General guidelines for CT->DT
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continuous — discrete
Ha(s) - H(2)
ha(t) - h[n]

m jQ-axis (s-plane) — unit circle (z-plane)
m if Hy(S) is stable — H(z) is stable



Different CT->DT approaches
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m Mapping differentials to differences
mz=1+4sT
m the jQ-axis is NOT mapped to the unit circle
m stable poles might not be mapped to inside the unit
circle

m Impulse invariance
m Bilinear transformation



Impulse invariance
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h[n] = Tdhc(an)

o N w2k
H(e) = 30 Ml + ()
k=—0o0

Impulse
Invariance

m Preserve good time-domain characteristics

m Linear scaling of frequency axis, w = QT

m Existence of aliasing

m Impulse invariance doesn’t imply step invariance




Impulse invariance (cont’)
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Impulse

Invariance = Mappmg poIeS

S=sk—z=e%

m Preserve residues
m s=jQ — z= e = & the unit circle

m if s is stable, i.e., region of s is less than 0,
— |zx| < 1 — digital filter is stable



Impulse invariance - An example
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m Find the system function of the digital filter mapped
from the analog filter with a system function

Impuise Hc(s) = %. Compare magnitude of the

- frequency response and pole-zero distributions in the s-

and z-plane

. _ 1—(e 2T cosbT)z~!
m Sol: H(Z) = (A—e@DTz-1)(1_e- @D Tz-1)

m Note that zeros are not mapped. Also note that |Hs(j$2)|
is not periodic but |H(e/¥)| is.




Bilinear transformation

[EEut m Mapping from s-plane to z-plane by relating s and z
according to a bilinear transformation. Hc(s) — H(z)

2 1—z1 sT

s= 7l o=y

m Two guidelines
5 m Preserves the frequency characteristics? l.e., maps the
Slinear frans. jQ-axis to the unit circle?
m Stable analog filter mapped to stable digital filter?
m Important properties of bilinear transformation
m Left-side of the s-plane — interior of the unit circle;
Right-side of the s-plane — exterior of the unit circle.
Therefore, stable analog filters — stable digital filters.
m The jQ-axis gets mapped exactly once around the unit
circle.
® No aliasing
B The jQ-axis is infinitely long but the unit circle isn't —
nonlinear distortion of the frequency, axis
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Bilinear Trans.

Blinear transformation - Mappings

i s-plane

Im z-plane

Image of
s =jQ (unit circle)

U -
Image of

left half-plane

w

w =2 arctan (%)




Bilinear transformation - How to tolerate

distortions?

Lecture 8

m Prewarp the digital cutoff frequency to an analog cutoff
frequency through Q = 2 tan ¥

m Better used to approximate piecewise constant filters which
will be mapped as constant as well

m Can’t be used to obtain digital lowpass filter with linear-phase

_ ] /": -2 un (2) " i : {i \ |
1S i 2 A A \ \ i
| T _Ze(3)

e “nl

m Avoid aliasing at the price of distortion of the frequency axis

Bilinear Trans.




The class of analog filters
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m Butterworth filter
u ‘H (./Q)|2 - 1+(1 )
m Note about the butterworth circle with radius Q.
m Q. is also called the 3dB-cutoff frequency when
—1 0/0g10|HCUQ)|2|Q:Qc ~3
m Monotonic function in both passband and stopband
m Matlab functions: buttord, butter

Example m Chebyshev filter

m Type | Chebyshev has an equiripple freq response in
the passband and varies monotonicaly in the stopband,

[He(jQ)[? = m
m Type Il Chebyshev is monotonic in the passband and

equiripple in the stopband, |H.(jQ)|? = W
Tn(Qs/9Q)

m Matlab functions: cheblord, chebyl, cheb2ord,
cheby?2




The class of analog filters (cont’d)
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m Elliptic filter
B |H(jQ)? = m where Ry(Q) is a rational
function of order N satisfying the perperty
Rn(1/9) = 1/Rn(Q2) with the roots of its numerator
Example lying within the interval 0 < Q < 1 and the roots of its
denominator lying in the interval 1 < Q < oo

m Equiripple in both the passband and the stopband
m Matlab functions: ellipord, ellip



Example
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m Specs of the discrete-time filter: passband gain

between 0dB and -1dB, and stopband attenuation of at
least -15dB.

1—6,> —1dB,ds < —15dB
Example

20 logq |H(€%?™)| > —1 — |H(€%?™)| > 107905 = 0.891:

(3)
20 logyq |H(€23™)| < —15 — |H(€0%™)| < 107975 = 0.177:

(4)



Example (cont’d)

Lecture 8 m Impulse invariance
m Round up to the next integer of N
m Due to aliasing problem, meet the passband exactly
with exceeded stopband
i0.27

177 \en 0.1
14+ (= =10 5
o) ®)
10?# 2N 15
14+ (512N =10 (6)
Example ( IQC )

m Bilinear transformation
m Round up to the next integer of N
m By convention, choose to meet the stopband exactly
with exceeded passband
j2tan(0.17)
14+ (——m—
( JS2e
j2tan(0.157)
JQe

)2N — 100‘1 (7)

14 ( 2N =10'° (8)



Example - Comparison
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