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Roadmap

Introduction
Discrete-time signals and systems - LTI systems

Unit sample response h[n]: uniquely characterizes an
LTI system
Linear constant-coefficient difference equation
Frequency response: H(ejω)
Complex exponential being eigenfunction of an LTI
system: y [n] = H(ejω)x [n] and H(ejω) as eigenvalue.

z transform
The z-transform, X (z) =

∑∞
n=−∞ x [n]z−n

Region of convergence - the z-plane
System function, H(z)
Properties of the z-transform
The significance of zeros
The inverse z-transform, x [n] = 1

2πj

∮
C X (z)zn−1dz:

inspection, power series, partial fraction expansion
Sampling and Reconstruction
Transform domain analysis - nwz
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Review - Design structures

Different representations of causal LTI systems
LCDE with initial rest condition
H(z) with |z| > R+ and starts at n = 0

Block diagram vs. Signal flow graph and how to determine
system function (or unit sample response) from the graphs
Design structures

Direct form I (zeros first)
Direct form II (poles first) - Canonic structure
Transposed form (zeros first)

IIR: cascade form, parallel form, feedback in IIR (computable
vs. noncomputable)
FIR: direct form, cascade form, parallel form, linear phase
Metric: computational resource and precision
Sources of errors: coefficient quantization error, input
quantization error, product quantization error, limit cycles

Pole sensitivity of 2nd-order structures: coupled form
Coefficient quantization examples: direct form vs.
cascade form
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Rationale

Review of complex exponentials as eigenfunctions of
the LTI

x [n] = ejω0n → y [n] = H(ejω0 )ejω0n

or x [n] = cosω0n→ y [n] = |H(ejω0 )| cos(ω0n + θ)

Separation of signal when they occupate different
frequency bands — choose the system function that is
unity at selective frequencies
Given a set of specifications, design a rational transfer
function that approximates the ideal filter maintaining
specifications of δp, δs, and the transition band.
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Stages of digital filter design

The specification of the desired properties of the
system

application-dependent
usually done in the frequency domain

The approximation of the specifications using a causal
discrete-time system
The realization of the system

e.g., DSP board
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Practical frequency-selective filters

Approximate ideal filters by a rational function or LCDE

Factors that affect the filter performance
the maximum tolerable passband ripple, 20 log10 δp
the maximum tolerable stopband ripple, 20 log10 δs
the passband edge frequency ωp
the stopband edge frequency ωs
M and N: order of the LCDE
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Design a discrete-time lowpass filter to filter a
continuous-time signal with the following specs (with a
sampling rate of 104 samples/s):

The gain should be within ±0.01 of unity in the
frequency band 0 ≤ Ω ≤ 2π(2000)
The gain should be no greater than 0.001 in the
frequency band 2π(3000) ≤ Ω

Parameter setup
δp1 = δp2 = 0.01, δs = 0.001
ωp = 2π(2000)/104, ωs = 2π(3000)/104

Ideal passband gain in decibels?
maximum passband gain in decibels?
maximum stopband gain in decibels?
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Design techniques for IIR filters

Analytical — closed-form solution of transfer function
Continuous-time→ Discrete-time
Algorithmic
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General guidelines for CT->DT

continuous → discrete
Ha(s) → H(z)
ha(t) → h[n]

jΩ-axis (s-plane)→ unit circle (z-plane)
if Ha(s) is stable→ H(z) is stable
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Different CT->DT approaches

Mapping differentials to differences
z = 1 + sT
the jΩ-axis is NOT mapped to the unit circle
stable poles might not be mapped to inside the unit
circle

Impulse invariance
Bilinear transformation
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Impulse invariance

h[n] = Tdhc(nTd ) (1)

H(ejω) =
∞∑

k=−∞
Hc[

jω
Td

+
j2πk
Td

] (2)

Preserve good time-domain characteristics
Linear scaling of frequency axis, ω = ΩT
Existence of aliasing
Impulse invariance doesn’t imply step invariance
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Impulse invariance (cont’)

Hc(s) =
N∑

k=1

Ak

s − sk
→ H(z) =

N∑
k=1

TdAk

1− esk Td z−1

Mapping poles

s = sk → z = esk Td

Preserve residues
s = jΩ→ z = ejΩTd = ejω, the unit circle
if sk is stable, i.e., region of sk is less than 0,
→ |zk | < 1→ digital filter is stable
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Impulse invariance - An example

Find the system function of the digital filter mapped
from the analog filter with a system function
Hc(s) = s+a

(s+a)2+b2 . Compare magnitude of the
frequency response and pole-zero distributions in the s-
and z-plane

Sol: H(z) = 1−(e−aT cos bT )z−1

(1−e−(a+jb)T z−1)(1−e−(a−jb)T z−1)

Note that zeros are not mapped. Also note that |Hs(jΩ)|
is not periodic but |H(ejω)| is.
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Bilinear transformation

Mapping from s-plane to z-plane by relating s and z
according to a bilinear transformation. Hc(s)→ H(z)

s =
2
T

(
1− z−1

1 + z−1 ), or z =
1 + sT

2

1− sT
2

Two guidelines
Preserves the frequency characteristics? I.e., maps the
jΩ-axis to the unit circle?
Stable analog filter mapped to stable digital filter?

Important properties of bilinear transformation
Left-side of the s-plane→ interior of the unit circle;
Right-side of the s-plane→ exterior of the unit circle.
Therefore, stable analog filters→ stable digital filters.
The jΩ-axis gets mapped exactly once around the unit
circle.

No aliasing
The jΩ-axis is infinitely long but the unit circle isn’t →
nonlinear distortion of the frequency axis
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Blinear transformation - Mappings



Lecture 8

Recap

Introduction

CT->DT

Impulse
Invariance

Bilinear Trans.

Example

Bilinear transformation - How to tolerate
distortions?

Prewarp the digital cutoff frequency to an analog cutoff
frequency through Ω = 2

T tan ω
2

Better used to approximate piecewise constant filters which
will be mapped as constant as well
Can’t be used to obtain digital lowpass filter with linear-phase

Avoid aliasing at the price of distortion of the frequency axis
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The class of analog filters

Butterworth filter
|Hc(jΩ)|2 = 1

1+( jΩ
jΩc

)2N

Note about the butterworth circle with radius Ωc
Ωc is also called the 3dB-cutoff frequency when
−10log10|Hc(jΩ)|2|Ω=Ωc ≈ 3
Monotonic function in both passband and stopband
Matlab functions: buttord, butter

Chebyshev filter
Type I Chebyshev has an equiripple freq response in
the passband and varies monotonicaly in the stopband,
|Hc(jΩ)|2 = 1

1+ε2T 2
N (Ω/Ωp)

Type II Chebyshev is monotonic in the passband and
equiripple in the stopband, |Hc(jΩ)|2 = 1

1+ε2[
TN (Ωs/Ωp )

TN (Ωs/Ω) ]2

Matlab functions: cheb1ord, cheby1, cheb2ord,
cheby2
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The class of analog filters (cont’d)

Elliptic filter
|Hc(jΩ)2 = 1

1+ε2R2
N (Ω/Ωp)

where RN(Ω) is a rational
function of order N satisfying the perperty
RN(1/Ω) = 1/RN(Ω) with the roots of its numerator
lying within the interval 0 < Ω < 1 and the roots of its
denominator lying in the interval 1 < Ω <∞
Equiripple in both the passband and the stopband
Matlab functions: ellipord, ellip
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Specs of the discrete-time filter: passband gain
between 0dB and -1dB, and stopband attenuation of at
least -15dB.

1− δp ≥ −1dB, δs ≤ −15dB

20 log10 |H(ej0.2π)| ≥ −1→ |H(ej0.2π)| ≥ 10−0.05 = 0.89130 ≤ |ω| ≤ 0.2π
(3)

20 log10 |H(ej0.3π)| ≤ −15→ |H(ej0.3π)| ≤ 10−0.75 = 0.17780.3π ≤ |ω| ≤ π
(4)
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Example (cont’d)

Impulse invariance
Round up to the next integer of N
Due to aliasing problem, meet the passband exactly
with exceeded stopband

1 + (
j 0.2π

T
jΩc

)2N = 100.1 (5)

1 + (
j 0.3π

T
jΩc

)2N = 101.5 (6)

Bilinear transformation
Round up to the next integer of N
By convention, choose to meet the stopband exactly
with exceeded passband

1 + (
j2 tan(0.1π)

jΩc
)2N = 100.1 (7)

1 + (
j2 tan(0.15π)

jΩc
)2N = 101.5 (8)
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Example - Comparison
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