 -		^
 C T	r 🗠	- 24
U	 	0

Recap

CT->DT

Impulse Invariance Bilinear Tra

Digital Signal Processing Lecture 8 - Filter Design - IIR

Electrical Engineering and Computer Science University of Tennessee, Knoxville

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Overview

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

Roadmap

Lecture 8

Recap

- Introduction
- Discrete-time signals and systems LTI systems
 - Unit sample response h[n]: uniquely characterizes an LTI system
 - Linear constant-coefficient difference equation
 - Frequency response: $H(e^{j\omega})$
 - Complex exponential being eigenfunction of an LTI system: y[n] = H(e^{jω})x[n] and H(e^{jω}) as eigenvalue.

z transform

- The *z*-transform, $X(z) = \sum_{n=-\infty}^{\infty} x[n]z^{-n}$
- Region of convergence the z-plane
- System function, H(z)
- Properties of the z-transform
- The significance of zeros
- The inverse *z*-transform, $x[n] = \frac{1}{2\pi j} \oint_C X(z) z^{n-1} dz$: inspection, power series, partial fraction expansion

- Sampling and Reconstruction
- Transform domain analysis nwz

Review - Design structures

Lecture 8

Recap

- Introduction
- CT->DT
- Impulse Invariance
- Bilinear Trans.
- Example

- Different representations of causal LTI systems
 - LCDE with initial rest condition
 - H(z) with $|z| > R_+$ and starts at n = 0
- Block diagram vs. Signal flow graph and how to determine system function (or unit sample response) from the graphs
- Design structures
 - Direct form I (zeros first)
 - Direct form II (poles first) Canonic structure
 - Transposed form (zeros first)
- IIR: cascade form, parallel form, feedback in IIR (computable vs. noncomputable)
- FIR: direct form, cascade form, parallel form, linear phase
- Metric: computational resource and precision
- Sources of errors: coefficient quantization error, input quantization error, product quantization error, limit cycles
 - Pole sensitivity of 2nd-order structures: coupled form
 - Coefficient quantization examples: direct form vs. cascade form

Rationale

Lecture 8

Recap

Introduction

CT->DT

Impulse Invariance

bilinear trai

Example

- Review of complex exponentials as eigenfunctions of the LTI
 - $x[n] = e^{j\omega_0 n} \rightarrow y[n] = H(e^{j\omega_0})e^{j\omega_0 n}$
 - or $x[n] = \cos \omega_0 n \rightarrow y[n] = |H(e^{j\omega_0})| \cos(\omega_0 n + \theta)$
- Separation of signal when they occupate different frequency bands — choose the system function that is unity at selective frequencies
- Given a set of specifications, design a rational transfer function that approximates the ideal filter maintaining specifications of δ_p, δ_s, and the transition band.

Stages of digital filter design

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Practical frequency-selective filters

Lecture 8

Recap

Introduction

CT->DT

Impulse Invariance Bilinear Trai

Approximate ideal filters by a rational function or LCDE

Factors that affect the filter performance

- the maximum tolerable passband ripple, $20 \log_{10} \delta_p$
- the maximum tolerable stopband ripple, $20 \log_{10} \delta_s$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- the passband edge frequency ω_p
- the stopband edge frequency ω_s
- M and N: order of the LCDE

Example

Lecture 8

- Recap
- Introduction
- CT->DT
- Impulse Invariance
- Bilinear Trans.
- Example

- Design a discrete-time lowpass filter to filter a continuous-time signal with the following specs (with a sampling rate of 10⁴ samples/s):
 - The gain should be within ±0.01 of unity in the frequency band 0 ≤ Ω ≤ 2π(2000)
 - The gain should be no greater than 0.001 in the frequency band 2π(3000) ≤ Ω

(ロ) (同) (三) (三) (三) (三) (○) (○)

- Parameter setup
 - $\delta_{p1} = \delta_{p2} = 0.01, \, \delta_s = 0.001$
 - $\omega_p = 2\pi (2000)/10^4, \, \omega_s = 2\pi (3000)/10^4$
 - Ideal passband gain in decibels?
 - maximum passband gain in decibels?
 - maximum stopband gain in decibels?

Design techniques for IIR filters

Lecture 8

Recap

Introduction

CT->DT

Impulse Invariance Bilinear Tra Example Analytical — closed-form solution of transfer function

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- Continuous-time → Discrete-time
- Algorithmic

General guidelines for CT->DT

Recap

Introductio

CT->DT

Impulse Invariance Bilinear Trar Example

continuous	\rightarrow	discrete
$H_a(s)$	\rightarrow	H(z)
$h_a(t)$	\rightarrow	h[n]

■ $j\Omega$ -axis (s-plane) → unit circle (z-plane) ■ if $H_a(s)$ is stable → H(z) is stable

Different CT->DT approaches

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Impulse invariance

Lecture 8

Recap

Introduction

CT->DT

Impulse Invariance

Bilinear Trans

Example

 $h[n] = T_d h_c(nT_d) \tag{1}$

$$H(e^{j\omega}) = \sum_{k=-\infty}^{\infty} H_c [\frac{j\omega}{T_d} + \frac{j2\pi k}{T_d}]$$
(2)

Preserve good time-domain characteristics

- Linear scaling of frequency axis, $\omega = \Omega T$
- Existence of aliasing
- Impulse invariance doesn't imply step invariance

Impulse invariance (cont')

Lecture 8

Recap

Introductior

CT->DT

Impulse Invariance Bilinear Trans

$$H_{c}(s) = \sum_{k=1}^{N} \frac{A_{k}}{s - s_{k}} \to H(z) = \sum_{k=1}^{N} \frac{T_{d}A_{k}}{1 - e^{s_{k}T_{d}}z^{-1}}$$

Mapping poles

$$s = s_k \rightarrow z = e^{s_k T_d}$$

Preserve residues

•
$$s = j\Omega \rightarrow z = e^{j\Omega T_d} = e^{j\omega}$$
, the unit circle

■ if s_k is stable, i.e., region of s_k is less than 0, $\rightarrow |z_k| < 1 \rightarrow \text{digital filter is stable}$

Impulse invariance - An example

Lecture 8

Recap

Introduction

CT->DT

Impulse Invariance Bilinear Trans Find the system function of the digital filter mapped from the analog filter with a system function $H_c(s) = \frac{s+a}{(s+a)^2+b^2}$. Compare magnitude of the frequency response and pole-zero distributions in the sand z-plane

• Sol:
$$H(z) = \frac{1 - (e^{-aT} \cos bT)z^{-1}}{(1 - e^{-(a+jb)T}z^{-1})(1 - e^{-(a-jb)T}z^{-1})}$$

Note that zeros are not mapped. Also note that |H_s(jΩ)| is not periodic but |H(e^{jω})| is.

(日) (日) (日) (日) (日) (日) (日)

Bilinear transformation

Lecture 8

- Recap
- Introduction
- CT->DT
- Impulse Invariance
- Bilinear Trans.
- Example

■ Mapping from *s*-plane to *z*-plane by relating *s* and *z* according to a bilinear transformation. *H_c(s)* → *H(z)*

$$s = rac{2}{T}(rac{1-z^{-1}}{1+z^{-1}}), ext{ or } z = rac{1+rac{sT}{2}}{1-rac{sT}{2}}$$

- Two guidelines
 - Preserves the frequency characteristics? I.e., maps the *j*Ω-axis to the unit circle?
 - Stable analog filter mapped to stable digital filter?
- Important properties of bilinear transformation
 - Left-side of the s-plane → interior of the unit circle; Right-side of the s-plane → exterior of the unit circle. Therefore, stable analog filters → stable digital filters.
 - The jΩ-axis gets mapped exactly once around the unit circle.
 - No aliasing
 - The $j\Omega$ -axis is infinitely long but the unit circle isn't \rightarrow nonlinear distortion of the frequency axis, A = 0

Sac

Blinear transformation - Mappings

Bilinear transformation - How to tolerate distortions?

Lecture 8

- Recap
- Introduction
- CT->D1
- Impulse Invariance
- Bilinear Trans.
- Example

- Prewarp the digital cutoff frequency to an analog cutoff frequency through $\Omega = \frac{2}{7} \tan \frac{\omega}{2}$
- Better used to approximate piecewise constant filters which will be mapped as constant as well
- Can't be used to obtain digital lowpass filter with linear-phase

Avoid aliasing at the price of distortion of the frequency axis

The class of analog filters

Lecture 8

Recap

- Introduction
- CT->DT
- Impulse Invariance
- Bilinear Trans.

Example

Butterworth filter

- $|H_c(j\Omega)|^2 = \frac{1}{1 + (\frac{j\Omega}{j\Omega_c})^{2N}}$
- Note about the butterworth circle with radius Ω_c
- Ω_c is also called the 3dB-cutoff frequency when $-10\log_{10}|H_c(j\Omega)|^2|_{\Omega=\Omega_c} \approx 3$
- Monotonic function in both passband and stopband
- Matlab functions: buttord, butter

Chebyshev filter

- Type I Chebyshev has an equiripple freq response in the passband and varies monotonically in the stopband, $|H_c(j\Omega)|^2 = \frac{1}{1+e^2 T_k^0(\Omega/\Omega_p)}$
- Type II Chebyshev is monotonic in the passband and equiripple in the stopband, $|H_c(j\Omega)|^2 = \frac{1}{1+\epsilon^2 [\frac{T_H(G_s/\Omega_0)}{T_c(G_s/\Omega_0)}]^2}$
- Matlab functions: cheblord, cheby1, cheb2ord, cheby2

The class of analog filters (cont'd)

(日) (日) (日) (日) (日) (日) (日)

Example

Lecture 8

Recap

Introductio

CT->DT

Impulse Invariance

Bilinear Trans

Example

 Specs of the discrete-time filter: passband gain between 0dB and -1dB, and stopband attenuation of at least -15dB.

$$1 - \delta_{p} \ge -1 dB, \delta_{s} \le -15 dB$$

$$\begin{array}{l} 20\log_{10}|H(e^{j0.2\pi})| \geq -1 \rightarrow |H(e^{j0.2\pi})| \geq 10^{-0.05} = 0.8913\\ (3)\\ 20\log_{10}|H(e^{j0.3\pi})| \leq -15 \rightarrow |H(e^{j0.3\pi})| \leq 10^{-0.75} = 0.1773 \end{array}$$

(4)

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Example (cont'd)

Lecture 8

Impulse invariance

- Round up to the next integer of N
- Due to aliasing problem, meet the passband exactly with exceeded stopband

$$1 + (\frac{j\frac{0.2\pi}{T}}{j\Omega_c})^{2N} = 10^{0.1}$$
 (5)

$$1 + (\frac{j\frac{0.3\pi}{T}}{j\Omega_c})^{2N} = 10^{1.5}$$
 (6)

- Bilinear transformation
 - Round up to the next integer of N
 - By convention, choose to meet the stopband exactly with exceeded passband

$$1 + \left(\frac{j2\tan(0.1\pi)}{j\Omega_c}\right)^{2N} = 10^{0.1}$$
(7)
$$1 + \left(\frac{j2\tan(0.15\pi)}{j\Omega_c}\right)^{2N} = 10^{1.5}$$
(8)

Invariand

Bilinear Trans

Example

Example - Comparison

Recap Introducti

CT->DT

Impulse Invariance

Bilinear Trans

Example

200