Digital Signal Processing
Lecture 10 - Discrete Fourier Transform

Electrical Engineering and Computer Science
University of Tennessee, Knoxville

November 12, 2015
Overview

1. Recap
2. DTFT
3. DFS
4. DFT
Review - 1

- Introduction
- Discrete-time signals and systems - LTI systems
 - Unit sample response \(h[n] \): uniquely characterizes an LTI system
 - Linear constant-coefficient difference equation
 - Frequency response: \(H(e^{j\omega}) \)
 - Complex exponentials being eigenvalues of an LTI system: \(y[n] = H(e^{j\omega})x[n] \)
 - Fourier transform
- \(z \) transform
 - The \(z \)-transform, \(X(z) = \sum_{n=\infty}^{n=-\infty} x[n]z^{-n} \)
 - Region of convergence - the \(z \)-plane
 - System function, \(H(z) \)
 - Properties of the \(z \)-transform
 - The significance of zeros
 - The inverse \(z \)-transform
- Relationships between the \(n \), \(\omega \), and \(z \) domains: Knowing the correspondence between \(h[n] \), \(H(e^{j\omega}) \), and the pole-zero plot
Review - 2

- Design structures
 - Block diagram vs. Signal flow graph: Knowing how to determine system function, unit sample response, or difference equation from the graphs
 - Different design structures: Knowing pros and cons of each form [Direct form I (zeros first), Direct form II (poles first) - Canonic structure, Transposed direct form II (zeros first), Cascade form, Parallel form, Coupled form]
 - Specific to IIR or FIR: Feedback in IIR (computable vs. noncomputable), Linear phase in FIR
 - Metrics: computational resource and precision
 - Sources of errors: Knowing the concept of pole sensitivity of 2nd-order structures leading to coupled form design, and coefficient quantization examples between direct form vs. cascade form
Filter design

- IIR: CT → DT (impulse invariance vs. bilinear transformation)
- FIR

- Knowing the characteristics of the four types of causal linear phase FIR filters
- Window method - Kaiser window: must use minimum specs; the approximation error is scaled by the size of the jump that produces them
- Optimal method (Alternation theorem <knowing how to determine the number of alternations>, PM algorithm)
Discrete-Time Fourier Transform (DTFT)

- Fourier transform representation of $x[n]$

$$X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n} \quad (1)$$

$$x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega})e^{j\omega n} d\omega \quad (2)$$

- Existence of Fourier transform

 - Absolutely summable (a sufficient condition),
 $$\sum_{n=-\infty}^{\infty} |x[n]| < \infty$$
 leading to uniform convergence,
 $$\lim_{M \to \infty} \int_{-\pi}^{\pi} |X(e^{j\omega}) - X_M(e^{j\omega})| d\omega = 0$$

 - Square summable, $\sum_{n=-\infty}^{\infty} |x[n]|^2 < \infty$, leading to mean-square convergence,
 $$\lim_{M \to \infty} \int_{-\pi}^{\pi} |X(e^{j\omega}) - X_M(e^{j\omega})|^2 d\omega = 0$$
Discrete Fourier Series (DFS)

- Periodic sequence does not satisfy either absolutely summable or square summable, therefore, it does not have a Fourier representation.

- However, sequences expressed as a sum of complex exponentials can be considered to have an FT representation, i.e., as a train of impulses.

\[X(e^{j\omega}) = \sum_{r=-\infty}^{\infty} \sum_{k} 2\pi a_k \delta(\omega - \omega_k + 2\pi r) \]

- Interpret DTFT of a periodic signal to be an impulse train in the frequency domain with the impulse values proportional to the DFS coefficients.
DFS - cont’d

\[\tilde{X}[k] = \sum_{n=0}^{N-1} \tilde{x}[n] W_N^{kn} \]

\[\tilde{x}[n] = \frac{1}{N} \sum_{k=0}^{N-1} \tilde{X}[k] W_N^{-kn} \]

where \(W_N = e^{-j(2\pi/N)} \).

Since any periodic sequence can be represented as a sum of complex exponentials

\[X(e^{j\omega}) = \sum_{k=-\infty}^{\infty} \frac{2\pi}{N} \tilde{X}[k] \delta(\omega - \frac{2\pi k}{N}) \]
Finite-length signal vs. periodic signal

\[
\tilde{x}[n] = x[n] \ast \tilde{p}[n] = x[n] \ast \sum_{r=-\infty}^{\infty} \delta[n - rN] = \sum_{r=-\infty}^{\infty} x[n - rN]
\]

\[
\tilde{x}[n] = x[(n)_{N}]
\]

\[
\tilde{X}[k] = X[(k)_{N}]
\]
Discrete Fourier Transform (DFT)

- \(X[k] = \sum_{n=0}^{N-1} x[n] W_N^{kn}, \ 0 \leq k \leq N - 1 \)
- \(x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k] W_N^{-kn}, \ 0 \leq n \leq N - 1 \)
- DFT coefficients are samples of the z-transform at equal-sapce points on the unit circle

\[
X(z) = \sum_{n=0}^{N-1} x[n] z^{-n}, \ X(k) = X(z)|_{z=W_N^{-k}}, \ k = 0, \cdots, N-1
\]
Relationship between DTFT, DFS, and DFT
Properties of DFT

- Shifting properties
- Duality
- Convolution property - circular convolution. Think about circular convolution as wrapping the sequence on the surface of two cylinders, one inside another; then convolution is done by rotate the inner cylinder with respect to the outer one.

Circular convolution = linear convolution plus aliasing
Shifting property

- **Diagram (a)**: Sequence $x[n]$.
- **Diagram (b)**: Sequence $\bar{x}[n]$ shifted by 2.
- **Diagram (c)**: Sequence $\bar{x}_1[n] = \bar{x}[n + 2]$.
- **Diagram (d)**: Sequence $x_1[n] = \begin{cases} \bar{x}_1[n], & 0 \leq n \leq N - 1 \\ 0, & \text{otherwise} \end{cases}$.
Duality property

Recap
DTFT
DFS
DFT
Convolution property

\[x_2[m] \]

\[x_1[m] \]

\[x_2[((0 - m)_N), 0 \leq m \leq N - 1] \]

\[x_2[((1 - m)_N), 0 \leq m \leq N - 1] \]

\[x_3[n] = x_1[n] \otimes x_2[n] \]
Use circular convolution to implement linear convolution
Use circular convolution to implement linear convolution - aliasing

\[x_{3}[n] = x_{1}[n] \circledast x_{2}[n], \quad N = L \]

\[x_{3}[n] = x_{1}[n] \circledast x_{2}[n], \quad N = L + P - 1 \]
Use circular convolution to implement linear convolution - zero padding

- Frequency-domain calculation
 - (a) \(x_1[n] \leftrightarrow X_1[k], x_2[n] \leftrightarrow X_2[k]\)
 - (b) \(X_3[k] = X_1[k] \cdot X_2[k]\)
 - (c) \(x_3[n] = x_1[n] \circledast x_2[n]\) = inverse DFT of \(X_3[k]\) (note that I use \(\circledast\) to represent circular convolution.)

- Length of circular convolution
 - \(x_1[n]\) of length \(L\)
 - \(x_2[n]\) of length \(P\)
 - \(x_3[n] = x_1[n] \cdot x_2[n]\) of length \(L + P - 1\)
 - circular convolution has to be longer than the linear convolution. Time aliasing can be avoided if \(N \geq L + P - 1\)
Example - 2D Convolution

FIGURE 4.38
Illustration of the need for function padding.
(a) Result of performing 2-D convolution without padding.
(b) Proper function padding.
(c) Correct convolution result.
Example - 2D Convolution

Figure 4.39 Padded lowpass filter in the spatial domain (only the real part is shown).

Figure 4.40 Result of filtering with padding. The image is usually cropped to its original size since there is little valuable information past the image boundaries.
Example - 2D Convolution

Difference image from convolution in the spatial domain

Convolution in the frequency domain

No padding

With padding

Conv. spatially
Discrete Cosine Transform

- **Forward transform**
 \[T(u, v) = \sum_{x=0}^{N-1} \sum_{y=0}^{N-1} f(x, y)g(x, y, u, v) \]

 \[g(x, y, u, v) = \alpha(u)\alpha(v) \cos \left(\frac{(2x + 1)u\pi}{2N} \right) \cos \left(\frac{(2y + 1)v\pi}{2N} \right) \]

- **Inverse transform**
 \[f(x, y) = \sum_{x=0}^{N-1} \sum_{y=0}^{N-1} T(u, v)h(x, y, u, v) \]

 \[g(x, y, u, v) = h(x, y, u, v) \]
Discrete Cosine Transform

http://www.it.cityu.edu.hk/~itaku/lecture/Chap4.2.html
Discrete Cosine Transform

FIGURE 8.32 The periodicity implicit in the 1-D (a) DFT and (b) DCT.