
Integrated modeling of the electric grid,
communications, and control

James Nutaro, Phani Teja Kuruganti, Mallikarjun Shankar
Oak Ridge National Laboratory,

Oak Ridge, Tennessee, USA
{nutarojj, kurugantipv, shankarm}@ornl.gov

Laurie Miller, Sara Mullen
University of Minnesota, Minneapolis,

Minnesota, USA
{mill0660, mull0197}@umn.edu

March 18, 2008

Abstract

This paper addresses a central concern in modeling and simulating electric grids and
the information infrastructure that monitors and controls them. As the electric power
infrastructure incorporates modern computing and communication technology, joint
(hybrid) simulations of continuous power system models and discrete event models of
communication, computation, and control operations become essential for
understanding how the complete system behaves. In particular, new methods are
needed to model and simulate hybrid scenarios for systems as large and complex as
the electric grid. Here we offer a particular approach to modeling and simulation of
hybrid systems as an enabling technology for analysis (via simulation) of modern
electric power grids. Our approach, based on the Discrete Event System Specification
(DEVS), integrates existing simulation tools into a unified simulation scheme. We
demonstrate this approach with an integrated information and electric grid model of a
distributed, automatic frequency maintenance activity.

1. Introduction

Modern communication technology has a prominent role in current efforts to improve
the reliability and efficiency of electric power grids. Because of the central role that
will be played by communication networks in the future power grid, accurate
predictions of power grid behavior will be inseparable from accurate models of the
underlying communication infrastructure. Accurate modeling and simulation tools for
future power systems are needed to analyze electric power networks, digital
communication networks, and their interdependencies.

Current approaches to hybrid system simulation do not readily permit the construction
of very large hybrid system models. There are three major limiting factors, with
different simulation systems possessing some or all of these traits. The first is a lack
of expressiveness for discrete event dynamics. This is particularly true of continuous
system modeling tools that require discrete events to be described in terms of event
threshold functions; Beltrame describes several specific difficulties in this regard [4].

The second factor is lack of support for integrating external simulation models in a
well-defined way. While almost every simulation environment allows for the

integration of external simulation software, few provide a rigorous definition of the
resulting model dynamics [9]. This can result in simulated behaviors that are artifacts
solely of the software integration. These artifacts can be difficult to anticipate and
detect, making analysis of the simulation results an uncertain prospect.

The third factor is inadequate support for numerical integration of the continuous sub-
systems. This issue is manifested in discrete event simulation packages that have been
augmented with continuous system simulation algorithms. The difficulty here is
primarily technical, arising from the need to simulate continuous models that require
advanced simulation algorithms (e.g., implicit integration schemes, special methods
for stiff systems, and robust event detection schemes). Effective solutions can be
constructed by first overcoming the issues described in the above paragraphs, and
then defining an appropriate programming interface for continuous system simulation
packages. Our proposed approach solves the first two problems, thereby establishing a
necessary foundation for resolving this technical issue.

In the last decade, large cascading failures have raised concerns that the current
control structure for the power grid is, or will be, unable to cope with an increasing
demand for reliable electric power. Restructuring and deregulation in the electric
power industry has fundamentally changed power transmission patterns, and new
market pressures are eliminating capacity margins in both transmission and
generation. As a result, electric power system operators are observing system
behaviors that were uncommon in the previous decade, and for which there is limited
operating experience [8].

Improving the reliability of electric power grids will require experience with
uncommon system behaviors, broader situational awareness at regional control
centers, fast and reliable automatic control beyond what the current protection system
provides, and active participation by power consumers in the control process. It is
broadly believed that transmission and generation shortfalls can be addressed in the
short term by more effective use of existing resources (see, e.g., [16,8]). In the long
term, elastic demand for electric power will improve the security of the power system
[13]. This is motivating new and substantial interest in distributed power generation,
distributed power storage, and demand response systems that rely on advanced
communication technology (see, e.g., [23,26,15]).

Electric power grids contain a complex network of electromechanical control devices,
sensors, and data communication systems. Power system emergencies are dealt with
by two complementary systems. Automated protection systems act locally to quickly
and automatically contain localized problems. Wide area control is applied by
experienced system operators working in regional control centers. These centers use
remote sensor data obtained through a wide area communication system. It is
generally accepted that power systems in the future will incorporate data networks to
enable fast, automatic, and coordinated response to contingencies.

A power system model that integrates generators, loads, transmission lines, control
processes, and data networks is an example of a hybrid system. Physical laws that
dictate the behavior of electromechanical subsystems are described by continuous
equations, with simple discrete dynamics resulting from circuit breakers, relays, and
other types of local response mechanisms. Data networks, on the other hand, are
modeled as discrete event systems whose dynamic behavior is described by chains of
significant events. Significant events in a communication model include the
expiration of a timer, sending or receiving a packet, a packet buffer overflow, and

packet collisions on a shared bus.

There is little published work that describes techniques for simulating integrated
models of power systems and network-based, wide area control schemes. Methods
and tools described in the literature focus on integrating closed software packages
[14,2]. These methods are driven by the need to integrate software, and the results
often have limited application or make significant sacrifices of precision and
accuracy. The scenarios that we consider for the electric grid require the systematic
construction of non-trivial hybrid models; these models include complex continuous
and discrete dynamics. The central goal of this paper is to describe a systematic
approach to model and simulate the complicated interactions between the electric
power and digital communication systems.

In Section 2 we give background and discuss related work that sets the stage for our
proposed approach. We discuss the hybrid simulation challenges and also discuss the
fundamentals of our hybrid modeling methodology. In Section 3 we map our hybrid
modeling concept to an implementable formal structure defined in terms of the
Discrete Event System Specification (DEVS). In Section 4 we discuss the
implementation principles and a prototype simulation tool that we have constructed.
Sections 5 and 6 illustrate our approach with a hybrid model of a smart grid system
that aims to prevent under-frequency failures by using an automatic load control
scheme.

2. Modeling Integrated Power, Control, and
Communication Systems

The Open Access Same-Time Information System (OASIS) is a Web-based real-time
bulletin board for monitoring available transmission capacity and coordinating power
transfers. OASIS was mandated in the mid-1990s by the United States Federal Energy
Regulatory Commission (FERC) for the North American power grid. OASIS operates
over the Internet, using the Hyper Text Transport Protocol and IPv4, and it is one of
the first examples of a network based monitoring and control system used by the
United States power industry [20].

OASISNET is an interactive, Web-based simulation program that can be used to
study the behavior of OASIS networks. It allows system operators to gain experience
with OASIS through simulation [25]. OASISNET integrates a model of the OASIS
application, its underlying communication protocol, and a load flow model of the U.S.
electric power grid. OASISNET users can observe and effect simulated power flows
through the simulated OASIS application.

A substation automation architecture described in [6] makes substantial use of
standardized, packet based communication protocols. In the proposed system,
intelligent electronic devices are integrated via commercially available Ethernet
technology to create an integrated substation control system. Understanding,
improving, and accurately predicting the performance of complex, IP based
communication and control system will require detailed models of the complete,
integrated system.

Futuristic scenarios, in which distributed software systems installed at generators and
substations automatically detect and respond to problems that could result in power
system failures, are being seriously considered by some power system research

organizations [18,3,17,12,5]. These proposals envision software embedded in every
component of the power system to perform local monitoring and control. Embedded
control software uses standardized and commercially available communication
technologies to coordinate rapid control actions over wide geographic area.

These scenarios illustrate a growing need for integrated simulation of the continuous
(analog) power systems and discrete (digital) communications and control. The
EPOCH simulation environment [14] uses simulation middleware to integrate the
PSCAD/EMTDC electromagnetic transient simulator, the PSLF electromechanical
transient simulator, and the Network Simulator 2 (NS2) communication network
simulator. This approach uses available power system and network simulation tools,
and it thereby significantly reduces model development time. However, the simulation
software for the power system model is not designed to handle external events. This
forced the EPOCH designers to fix a synchronization interval for the two simulators,
possibly introducing substantial errors into the hybrid system model. A similar
methodology is used in [5] to integrate MATLAB Simulink and NS2.

Commercial and academic tools for building continuous systems simulations are
widely available. For example, Modelica (http://www.modelica.org) is a standardized
language for describing continuous systems, and several Modelica compilers are
available. Several recent research teams have integrated some discrete event system
modeling capabilities into existing continuous system simulation tools. A Modelica
package for simulating statecharts is described in [10]. Mosterman et al [19] showed
that classic Petri Nets can be simulated with Modelica by using time and state events.
These efforts have met with considerable success, but they are limited by both
simulation software performance and the range of discrete event systems that can be
modeled.

The SimEvent package from Mathworks, currently being developed as part of the
MATLAB Simulink environment, promises to overcome problems of expressiveness
and efficiency by providing a combined tool for modeling continuous and discrete
event systems. This package has become available only recently, and its internal
implementation has not, as yet, been discussed in the open literature.

The solutions described above have a common drawback; they require complex
discrete event simulations to be rebuilt from scratch for use with a particular
continuous system simulation package. This presents a significant obstacle to
studying systems with complex discrete dynamics. This is particularly true when
attempting to build a model of a modern communication network.

A more viable approach is to introduce continuous models as components in a
discrete event simulation. Several decades of research and commercial development
of continuous system modeling languages have produced standard languages (such as
Modelica) for describing continuous system models. Model reuse is one of the driving
goals of these standards. Many continuous system models that are described in this
way can be compiled into a form that is amenable to integration with discrete event
simulation tools. At the same time, the simulation code that is produced by the
compilers can use advanced numerical integration and event detection algorithms.

Our approach makes it possible to integrate mature continuous system simulation
technologies with powerful discrete event simulation tools. Discrete event simulation
packages that accurately model communication networks are widely available.
Moreover, existing continuous simulation languages can, in principle, be modified so

that the software produced by their compilers provides hooks for integrating it with
discrete event simulation tools. For example, the acslXtreme product, from AEgis
Technologies, has a substantial programming interface to the simulation code
produced by the ACSL compiler, and extensions to this API for the purpose of hybrid
system simulation are being considered. In light of these facts, a reasonable path
forward is to include continuous models in discrete event simulation frameworks; our
work takes this approach.

3. A DEVS-based Approach to Hybrid Simulation

A general approach to integrating continuous models into a discrete event simulation
framework is described in [27,11]. This approach can avoid problems of
expressiveness and efficiency with respect to modeling and simulating discrete event
systems. At the same time, powerful continuous system simulation algorithms can be
easily incorporated into the proposed framework.

A hybrid system with discrete input and output dynamics can be described with four
functions. The first function describes how the continuous, internal state variables
evolve between discrete events. The second function indicates how much time will
elapse before the next discrete internal event. The third function determines how the
system output changes in conjunction with discrete internal events. The fourth
function describes discrete state change in response to internal (state) and external
(input) events.

The dynamics associated with this structure can be summarized as follows. The
hybrid model is partitioned into a continuous part, possibly with state and time events,
and a discrete event part. The continuous part is simulated using a continuous system
simulation algorithm, but it schedules integration time steps using the discrete event
simulator’s event scheduling mechanism. The discrete event part is simulated without
change. The continuous system simulator schedules internal (self) events as dictated
by its numerical integration scheme and event detection algorithm. When self
scheduled events occur the simulator updates its state variables and, when required,
schedules events to trigger behaviors in the discrete event part of the system. External
events are handled just as time events would be handled and a new internal event is
scheduled based on the new system state. The success of this approach is predicated
on properly partitioning the system into its discrete and continuous parts.

This notion of a hybrid system is formalized with a structure

and the input and output value setsX Y ,
the internal state setS ,

the evolution functionF S R S: × → , (1)
the event scheduling functionG S R: → ,

the discrete action functionA S X SΦ: × → , ,

where { } and is the non event andX XΦ = ∪ Φ Φ − ,

the discrete output functionL S Y: → , .

The set X is the range of values that can be injected into the system. The set Y is the
range of values that can be produced by the system. The set S is the range of the
system’s internal state variables.

The evolution function ()F q h, , with q S∈ and h R∈ , takes the system from a state
q at time t to a later state q′ at time t h+ . This function describes continuous,
autonomous evolution of the model’s internal state. The system evolves continuously
until () 0G q = or a change occurs in the input trajectory. At these points, the discrete
action function dictates an immediate and, possibly, discontinuous state change.

The discrete action function ()A q u, , with u XΦ∈ , determines the response of the
model to discrete events. These events can be inputs to the system or be triggered by
its internal dynamics. In either case, the system changes state instantaneously from q
to ()q A q u′ = , . Changes due to internal dynamics occur when () 0G q = , and the
subsequent state of the system is determined by ()A q,Φ . External events are due to a
change in the input trajectory. In this case, the state immediately following the event
is given by ()A q x, , where x X∈ is the value of the input trajectory immediately
after the change occurs.

The discrete output function ()L q defines the model’s output trajectory. The initial
output value is given by 0()L q , where 0q is the initial state of the system. Discrete
changes in the output trajectory occur when () 0G q = . At these times, the output
trajectory takes the value ()L q , and it keeps this value until the system again enters a
state in which G evaluates to zero.

The dynamics associated with the structure (1) are defined by associating its elements
with a DEVS atomic model. The atomic model state set is S , and its input and output
sets are X and Y . The state transition, time advance, and output function of the
atomic model are defined in terms of the evolution function F , event scheduling
function G , discrete output function L , and discrete action function A . These
definitions are

() ((()))int q A F q ta qδ = , ,Φ

() (())ext q e x A F q e xδ , , = , ,

() ((()))con q x A F q ta q xδ , = , , (2)

() ()ta q G q=
() ((()))q L F q ta qλ = ,

In this representation, output and internal events coincide with the expiration of the
time advance. The discrete output is computed using the system state just prior to the
discrete event (i.e., prior to applying the discrete action function).

An implementation of this system will, in general, require events that do not result in
discrete actions (i.e., an evaluation of A) or discrete output (i.e., an evaluation of L).
These types of events are needed, for instance, when the evolution and event
scheduling functions are implemented with numerical integration and state event
detection algorithms (see, e.g., [7]). A DEVS model that is functionally equivalent to
(2) can be had by defining a function

IntegStep S R: →
that picks the next integration step size. The system dynamics are then defined by

((())) if () ()
()

(()) otherwise
() (())
() ((()))

() min{ () ()}
((())) if () ()

()
otherwise

int

ext

con

A F q ta q G q IntegStep q
q

F q ta q
q e x A F q e x
q x A F q ta q x

ta q G q IntegStep q
L F q ta q G q IntegStep q

q

δ

δ
δ

λ

, ,Φ ≤⎧
= ⎨ ,⎩

, , = , ,

, = , ,
= ,

, ≤⎧
= ⎨ Φ⎩

 (3)

4. Hybrid System Simulation with adevs and NS2

A hybrid simulation tool for network-based systems was developed using the NS2
[22] and adevs [1] simulation packages. Discrete event and continuous sub-processes
that do not model communications are implemented using adevs. Communication
specific processes are modeled using NS2. Models developed with adevs are
integrated into the NS2 simulation model using the simulation control API that is part
of the adevs simulation software. This API provides a collection for manipulating the
underlying model as a single discrete event process (specifically, the resultant of the
DEVS model; see [27]).

Figure 1. The simulation software architecture.

The adevs simulation software is encapsulated in an NS2 TclObject, and this
TclObject is used directly by the NS2 simulation. The separation of the model into
adevs and NS2 components is shown in Fig. 1. NS2 invokes the adevs components
when two types of events occur:

1. an internal adevs event and

2. receipt of a message at a process modeled within adevs.

Type 1 events are scheduled by NS2 on behalf of the adevs simulator. One event of
this type is scheduled at the beginning of the simulation. When a Type 1 event occurs,
the NS2 simulator performs the following actions:

1. it queries the adevs module for any network messages that need to be sent,

2. it schedules NS2 events to send messages returned by the above query,

3. it tells the adevs component to update its internal state, and

4. it queries the adevs component for its next event time and schedules a
corresponding adevs NS2 event.

Type 1 events cause the NS2 simulator to inject input into the adevs simulator in three
steps:

1. inject input events into the adevs component,

2. tell the adevs component to update its internal state using the injected events,
and

3. query the adevs component for its next event time and schedule a
corresponding adevs event in NS2.

The DEVS structure (4) is used to simulate continuous processes. A fourth order
Runge-Kutta integration scheme is used to solve the ODE set whose solution is the
evolution function F . Zero crossing functions are used to describe the location of
state events. Time events are scheduled explicitly.

State events are detected using discontinuity locking in conjunction with interval
bisection. With this approach, the continuous variables are integrated over a single
integration step. If the sign of a zero crossing function is unchanged at the end of the
step, then it is assumed that no state event occurred in the interval. Otherwise, the
integration step size is halved, and the test is repeated. If this procedure causes the
step size to reach some small threshold value, then the event is assumed to occur at
the end of that minimal step size. Our implementation uses the smallest single-
precision floating point value (i.e., the C FLT_MIN macro) as this minimal time step
value.

5. Example: Automatic Under-frequency Load Shedding

In this section, we use a notional system for automatic load control to demonstrate the
capabilities of our hybrid simulation framework. The continuous component in this
system is a power generation and transmission model of a 17 bus system that is based
on the IEEE 14 bus system. To accommodate the power flow calculations for this
model, three additional buses were added to the IEEE 14 bus model to separate buses
with both load and generation. The model consists of twelve loads and five generators
that are interconnected as shown in Fig. 2.

The power flow and load shedding aspects of this model have been simplified in two
ways. First, the power system model was developed to study the mechanical response
of generators to significant load changes and generator or transmission line losses
[21]. The bus voltages are assumed to remain constant, line resistance and shunt
reactance are neglected, and a linearized DC power flow is used to calculate the real
power flows in the network. This simplification is justified because the load control
mechanism studied here is triggered by frequency variations; consequently voltage
deviation and reactive power flow are neglected. Second, all loads are assumed to
have an interruptible component, and every load responds immediately to shedding
requests. This simplifies both the controller and load model by assuming ideal load
behaviors. We expect that a model which includes both reactive power flow and
market driven load behaviors may predict different outcomes from what is shown

here. Nonetheless, these two simplifications give us a manageable starting point and
allow for a clearer presentation of the model and its hybrid dynamics.

Figure 2. The 5 generator and 12 load bus power system model.

The generators are modeled as synchronous machines using the swing equation plus
additional equations that model a governor, non-reheat turbine, and overspeed
breaker. One of the five generators also includes a basic Automatic Generation
Control (AGC) unit that eliminates steady-state frequency error throughout the
system. The three equations that describe the generator dynamics are

()
100(0 25)

g

m e

m magc g m

P P M
k R PP P

δ ω

ω
δ ω

Δ = Δ

Δ = Δ −Δ /
Δ = − Δ + Δ / + . Δ +

where mPΔ and ePΔ are the deviations of mechanical power output and electrical
demand from the initial steady-state operating point 0P , gδΔ is the change in the
relative generator shaft angle, and ωΔ is the deviation of the shaft angular velocity
from 60Hz. The values R , M , and agck are the generator’s speed droop constant,
rotational inertia, and AGC gain. If the speed deviation of a machine exceeds 0 1± .
Hz, then it is disconnected from the transmission network.

Real power flow is calculated from generator shaft angles and electrical power

demand at the load buses. Disconnected generators are treated as load buses with zero
power demand [21]. To facilitate the calculation of electrical demand eP on the
generators, the network admittance matrix Y is broken into the four sub-blocks
shown in Eqn. 6. The llY block describes load to load connections, lgY and glY describe
the symmetric generator-load/load-generator connections, and ggY describes generator
to generator connections. Similarly, the bus angle and electric power vectors are split
into upper and lower blocks. The vectors lΘ and lP denote the load bus angles and
injected power. The vectors eP and gΘ are the electrical demand on the generators
and the generator shaft angles. The power flow equations are

lll lgl

ggl gge

Y YP
Y YP

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

⎡ ⎤⎡ ⎤ Θ
= ⎢ ⎥⎢ ⎥ Θ⎣ ⎦ ⎣ ⎦

 (6)

and the electrical demand on the generators is given by
1()ll gll lg

e l ggl gg

Y YP
Y YP

−= −Θ Θ
= + .Θ Θ

Attached to each generator is a monitor that samples the generator state at a fixed rate
of 1 T/ . The sampled variables are the generator mechanical power mPΔ , rate of
change in mechanical power mPΔ , electrical load ePΔ , shaft velocity ωΔ , and shaft
acceleration ωΔ . At each sampling instant, the monitor estimates time to an under-
frequency failure by

60 0(1) 59 9 if 0

if 0
ft

ω ω
ω

ω

. Δ + − .⎧ Δ <⎪ Δ= ⎨
⎪ ∞ Δ ≥⎩

and time to meet demand by

s

P Pm et
Pm

Δ −Δ
=

Δ
.

The generator is in danger of being disconnected if

t tf s≤ .

In this case, the monitor will broadcast a request asking all load buses to reduce their
power demand. If, on the other hand,

t ktf s>

where k 1>> is a safety factor, the system is operating under capacity. In this case,
the monitor will generate a message indicating that electrical power demand can be
increased.

Load change requests are summarized by the load service fraction α , with [0 1]α ∈ , .
When 1α = , the generator can tolerate the full electrical demand seen at its terminal.
When 1α < , the generator would like to see the demand on its terminal reduced to a
fraction α of the full power demand. Changes to α occur in discrete increments αΔ

at a maximum rate of 1 T/ .

The operation of the monitor is depicted graphically in Fig. 3. The monitor state and
output are computed at each sampling time. Circles denote discrete phases, and the
action performed in each phase is denoted by state change / output. Arrows denote
phase change conditions. At each sampling instant, the phase change conditions are
evaluated and the phase is changed accordingly. Then the output value is produced
and, subsequently, the state variable change is applied. A new monitor state and
output is calculated every T seconds using the sampled generator variable values.

Figure 3. State transition diagram for the generator monitor.

Load buses remember the last load service fraction received from each monitor. The
remembered requests are denoted iα , with [1 5]i∈ , indicating the monitor that
produced the request. Each load bus is also aware of its electrical demand. On
receiving a message, the load bus removes or restores some of its power demand,
resulting in an overall reduction in demand on the generators. Each bus assumes that
it produces 1 12/ of the total electrical demand, and that each generator carries 1 5/ of
the total electrical demand. Therefore, whenever a single generator requests a
reduction of its load from 1 to α , each load bus disconnects only (1) 60α− / of its
total electrical demand from the transmission network.

This reasoning leads to the load control rule that is implemented by each load bus.
Letting dL be the full power demand at a load bus, the amount of load served,
denoted sL , is equal to

5

1

1 11
12 60s d i

i
L L α

=

⎛ ⎞
= − + .⎜ ⎟

⎝ ⎠
∑

If the iα are 1, then all of the demand at the load bus is met (i.e., s dL L=). Otherwise,
each load bus sheds a fraction of its electrical demand. However, no individual load
bus is willing to reduce its power demand by more than 8 3%. , corresponding to all
the iα having a value of zero.

The monitors and load buses communicate through a packet switching network.
Communication lines follow the network transmission lines, and packets are routed
from origin to destination through this shared communication medium. The
communication lines are modeled as queues with a fixed throughput, measured in bits
per second (bps), and base delay. The time required for a packet to traverse a single
line is given by

bits base delay
throughput

+ .

Each line has a buffer for queuing packets, and only one packet can traverse the
communication line at any time. No packets are dropped. In general, a message will
need to travel through several lines before reaching its destination. Network flooding
is used to implement the broadcast function, with unique packet identifiers used to
prevent re-broadcasting of packets that have already been processed [24].

6. EXPERIMENTS

Two sets of experiments were conducted to study how base line latency and
throughput impact the effectiveness of the control scheme. A fixed parameter set was
used for the generators, electrical transmission network, and monitors. The line
admittances that were used are described in [21]. The initial power 0P at each
generator is calculated to ensure steady state at a selected bus angle [21]. Other
generator parameter selections are listed in Table 1. The controller parameters were

0 01T = . , 410k = , and 0 1αΔ = . . The size of a control message was fixed at 900
bytes. Base link latency and throughput were varied independently. Network
performance is summarized by the time average percentage of load served, i.e.,

0

1 power supplyPerformance
power demand

endt

end

dt
t

= ∫

where endt is the end of the experiment observation time (20 seconds in this case).

Generator 1 R/ agck
1 300 0
2 225 200
3 300 0
4 300 0
5 225 0

Table 1. Generator parameters

Load bus 0 0t = . 1 0t = . 10 0t = .

1 0.0
2 -0.217
3 -0.942
4 -0.112
5 -0.478
6 -0.076
7 -0.295 0.0 -0.4
8 -0.09 0.0 -0.09
9 -0.035
10 -0.061 0.0 -0.4
11 -0.135 0.0 -0.135
12 -0.149 0.0 -0.149

Table 2. Electrical demand schedule

Figure 4. System failure in the absence of any load control scheme.

Figure 5. Generator frequencies when base line delay is 130ms and throughput is 1Mbps.

Figure 6. Total demand, served demand, and service fractions when base line delay is 130ms and

throughput is 1Mbps.

Figure 7. Generator frequencies when base line delay is 50ms and throughput is 1Mbps.

Figure 8. Total demand, served demand, and service fractions when base line delay is 50ms and

throughput is 1Mbps.

Figure 9. Performance as a function of latency with throughput fixed at 1Mbps.

Figure 10. Generator frequencies when line throughput is 256Kbps and base latency is 20ms.

Figure 11. Total demand, served demand, and service fractions when line throughput is 256Kbps

and base line delay is 20ms.

Figure 12. Performance as a function of throughput with base latency fixed at 20ms.

Figure 13. Number of load shedding events as a function of throughput with base latency fixed at

20ms.
The electrical demand schedule that was used in these experiments is shown in Table
2. The 0t = column shows initial power demand at each bus. Subsequent columns
contain an entry only for buses at which the power demand changes. Electrical
demand is described by per unit power injected at the load bus. Without any load
control, this schedule causes all five generators trip offline following the load spike at

10t = seconds. The failure scenario is shown in Figure 4.
In the first set of experiments, the network throughput was fixed at 1Mbps, and the
base line latency was varied between 20ms and 135ms. The five generators fail
shortly after 10t = in the 135ms scenario. The generator frequency, load service
fractions, and electrical supply and demand totals for the 130ms scenario are shown in
Fig. 5 and 6. This is the upper end of the survivable latency range, and there is a
noticeable ripple in the system frequency that is caused by oscillations of the load
service fraction at generators three and five. These ripples disappear and the system
reaches a stable state at 50ms of latency, as shown in Figs. 7 and 8.

Figure 9 shows how the controller performance varies as a function of base line
latency. The controller performance decreases gradually as the base latency increases.
Catastrophic failure occurs when the base line latency reaches 135ms (not shown in
the figure).

In the second set of experiments, the base line latency was fixed at 20ms and the
throughput varied between 115Kbps and 10Gbps. The system fails at 115Kbps with
all of the generators tripping offline. The generator frequency, load service fractions,
and electrical supply and demand totals for the 256Kbps scenario are shown in Fig. 10
and 11. The system behaves nicely in this case, with the served load meeting demand
approximately 5 seconds after the load spike at 10t = . The network performance as a
function of throughput is shown in Fig. 12. The performance actually decreases as
additional throughput becomes available, reaching minimum performance at 30Mbps,
and then stabilizing near 99 65%. at 100Mbps. Fig. 13 shows that the number of load
shedding events changes as the line throughput changes. The number of load shedding
events stabilizes as the performance metric stabilizes.

The surprising drop in performance as throughput increases is due to the complex
interaction of the control scheme, electrical power flow, and communication network.
As the link bandwidth changes, the queuing behavior in the network changes, and this

affects the order in which the loads are shed from the system. Because individual
loads vary in size, the order in which they are reduced substantially impacts the
behavior of the electrical network and load control system. Moreover, the impact of a
particular load shedding event is dependent on when it occurs and where it is located
in the network. The combined effect on overall system behavior would be difficult to
anticipate without an integrated, dynamic model of the power, control, and
communication systems.

7. Conclusions

Power grid modernization efforts need powerful modeling and simulation tools for
hybrid systems. Improved situational awareness, substation automation, and
distributed monitoring and control all presume the use of modern communication
technology. The interaction of communication networks and the electric power
system will be difficult to study without the aid of accurate models and efficient
simulation environments.

Powerful modeling languages for continuous systems are already available. Models
described in these languages can, in many cases, be compiled into a form that is
amenable to integration with discrete event simulation tools. When compilers for
these languages provide this capability it will be possible to build the complicated,
large-scale hybrid models that are needed for engineering future power systems. In
this paper we have shown that this can be done and demonstrated the key elements of
our particular approach.

Modeling the continuous and discrete systems together, in a manner that preserves our
formal definition of the hybrid dynamics, is the central contribution of this paper. We
leveraged the DEVS methodology to create a hybrid model and simulate it using
adevs and NS2. Our experiments with a load shedding scenario exposed behaviors
that can only be observed with an integrated hybrid model. In particular, we find that
the communication network affects the order of load shedding and that available
bandwidth and network latency have a significant effect on the controller behavior.
Identifying these behaviors requires detailed simulations. Because it is intractable to
create analytical models of these integrated systems, simulation is necessary. Analysis
of complex, integrated discrete and continuous processes requires accurate simulation
techniques; our approach addresses this need.

References

[1] ADEVS: 2006, adevs: A Discrete Event system Simulator. Online at
http://www.ornl.gov/1qn/adevs.

[2] Al-Hammouri, A., Agrawal, D., Liberatore, V., Al-Omari, H., Al-Qudah, Z. and
Branicky, M. S.: 2007, Demo Abstract: A Co-Simulation Platform for Actuator
Networks, Poster at the 5th ACM Conference on Embedded Networked Sensor
Systems Conference.

[3] Amin, M. and Wollenberg, B.: 2005, Toward a smart grid: power delivery for the
21st century, IEEE Power & Energy Magazine (5), 34–41.

[4] Beltrame, T.: 2006, Design and Development of a Dymola/Modelica Library for
Discrete Event-oriented Systems Using DEVS Methodology, Master’s thesis,

Department of Computational Science, ETH Zurich, Zurich, Switzerland.

[5] Bhowmik, S., Tomsovic, K. and Bose, A.: 2004, Communication models for third
party load frequency control, IEEE Transactions on Power Systems (1), 543–548.

[6] Caird, K.: 1997, Integrating substation automation, IEEE Spectrum (8), 64–69.

[7] Cellier, F. E. and Kofman, E.: 2006, Continuous system simulation, Springer.

[8] Cooke, D.: 2005, Learning from the Blackouts: Transmission system security in
competitive electricity markets, Organisation for Economic Co-Operation and
Development / International Energy Agency.

[9] Davis, P. and Anderson, R.: 2004, Improving the Composability of Department of
Defense Models and Simulations, RAND Corporation.

[10] Ferreira, J. and de Oliveira, J.: 1999, Modeling hybrid systems using StateCharts
and Modelica, Proceedings of the 7th IEEE International Conference on Emerging
Technologies and Factory Automation, Barcelona, Spain.

[11] Giambiasi, N., Escude, B. and Ghosh, S.: 2000, GDEVS: A generalized discrete
event specification for accurate modeling of dynamic systems, Transactions of the
Society for Computer Simulation International (3), 120–134.

[12] Hauser, C., Bakken, D. and Bose, A.: 2005, A failure to communicate: Next-
generation communication requirements, technologies, and architecture for the
electric power grid, IEEE Power & Energy Magazine (2), 47–55.

[13] Hogan, W. W.: 1999, Market-Based Transmission Investments and Competitive
Electricity Markets. Unpublished manuscript, available (as of Dec. 3, 2007) at
http://ksghome.harvard.edu/ whogan/tran0899.pdf.

[14] Hopkinson, K., Wang, X., Giovanini, R., Thorp, J., Birman, K. and Coury, D.:
2006, EPOCHS: a platform for agent-based electric power and communication
simulation built from commercial off-the-shelf components, IEEE Transactions on
Power Systems (2), 548–558.

[15] Kiliccote, S., Piette, M. A., Watson, D. S. and Hughes, G.: 2006, Dynamic
Controls for Energy Efficiency and Demand Response: Framework Concepts and a
New Construction Case Study in New York, Proceedings of the ACEEE 2006
Summer Study on Energy Efficiency in Buildings.

[16] Kirby, B.: 2006, Demand Response for Power System Reliability: FAQ,
Technical Report ORNL/TM-2006/565, Oak Ridge National Laboratory.

[17] Kuruganti, T., Shankar, M., Allgood, G. and Djouadi, S.: 2006, On Analysis of
Control-Communication Integration in Distributed Power Grid’s Electric, Information
& Physical Domains, Proceedings of the 16th Annual Joint ISA POWID/EPRI
Control and Instrumentation Conference, San Jose, California, USA.

[18] Massoud, A. S. and Wollenberg, B.: 2005, Toward a smart grid: power delivery
for the 21st century, IEEE Power and Energy Magazine (5), 34–41.

[19] Mosterman, P., Otter, M. and Elmqvist, H.: 1998, Modeling Petri Nets as local
constraint equations for hybrid systems using Modelica, Proceedings of the 1998
Summer Computer Simulation Conference, Reno, Nevada, USA, pp. 314–319.

[20] Mountford, J. and Austria, R.: 1999, Keeping the lights on, IEEE Spectrum
(6), 34–39.

[21] Mullen, S.: 2006, Power system simulator for smart grid development, Master’s
thesis, University of Minnesota, Minneapolis, MN.

[22] NS2: 2006, The Network Simulator - ns2. Online at
http://nsnam.isi.edu/nsnam/index.php/User_Information.

[23] Ropp, M., Larson, D., Meendering, S., Mcmahon, D., Ginn, J., Stevens, J.,
Bower, W., Gonzalez, S., Fennell, K. and Brusseau, L.: 2006, Discussion of a Power
Line Carrier Communications-Based Anti-Islanding Scheme using a Commercial
Automatic Meter Reading System, Conference Record of the 2006 IEEE 4th World
Conference on Photovoltaic Energy Conversion, Vol. 2, pp. 2351–2354.

[24] Tanenbaum, A. S.: 1996, Computer Networks, Third Edition, Prentice Hall PTR,
Upper Saddle River, New Jersey.

[25] Tian, Y. and Gross, G.: 1998, OASISNET: an OASIS network simulator, IEEE
Transactions on Power Systems (4), 1251–1258.

[26] Watson, D., Piette, M., Sezgen, O. and Motegi, N.: 2004, Machine to Machine
(M2M) Technology in Demand Responsive Commercial Buildings, Proceedings of
the ACEEE 2004 Summer Study on Energy Efficiency in Buildings.

[27] Zeigler, B. P., Praehofer, H. and Kim, T. G.: 2000, Theory of Modeling and
Simulation, 2nd Edition, Academic Press.

