
Integrated modeling of the electric grid, 
communications, and control    

James Nutaro, Phani Teja Kuruganti, Mallikarjun Shankar   
Oak Ridge National Laboratory,   

Oak Ridge, Tennessee, USA   
{nutarojj, kurugantipv, shankarm}@ornl.gov   

Laurie Miller, Sara Mullen   
University of Minnesota, Minneapolis,  

Minnesota, USA   
{mill0660, mull0197}@umn.edu  

March 18, 2008 

Abstract 

This paper addresses a central concern in modeling and simulating electric grids and 
the information infrastructure that monitors and controls them. As the electric power 
infrastructure incorporates modern computing and communication technology, joint 
(hybrid) simulations of continuous power system models and discrete event models of 
communication, computation, and control operations become essential for 
understanding how the complete system behaves. In particular, new methods are 
needed to model and simulate hybrid scenarios for systems as large and complex as 
the electric grid. Here we offer a particular approach to modeling and simulation of 
hybrid systems as an enabling technology for analysis (via simulation) of modern 
electric power grids. Our approach, based on the Discrete Event System Specification 
(DEVS), integrates existing simulation tools into a unified simulation scheme. We 
demonstrate this approach with an integrated information and electric grid model of a 
distributed, automatic frequency maintenance activity.   

1. Introduction 

Modern communication technology has a prominent role in current efforts to improve 
the reliability and efficiency of electric power grids. Because of the central role that 
will be played by communication networks in the future power grid, accurate 
predictions of power grid behavior will be inseparable from accurate models of the 
underlying communication infrastructure. Accurate modeling and simulation tools for 
future power systems are needed to analyze electric power networks, digital 
communication networks, and their interdependencies.  

Current approaches to hybrid system simulation do not readily permit the construction 
of very large hybrid system models. There are three major limiting factors, with 
different simulation systems possessing some or all of these traits. The first is a lack 
of expressiveness for discrete event dynamics. This is particularly true of continuous 
system modeling tools that require discrete events to be described in terms of event 
threshold functions; Beltrame describes several specific difficulties in this regard [4].  

The second factor is lack of support for integrating external simulation models in a 
well-defined way. While almost every simulation environment allows for the 



integration of external simulation software, few provide a rigorous definition of the 
resulting model dynamics [9]. This can result in simulated behaviors that are artifacts 
solely of the software integration. These artifacts can be difficult to anticipate and 
detect, making analysis of the simulation results an uncertain prospect.  

The third factor is inadequate support for numerical integration of the continuous sub-
systems. This issue is manifested in discrete event simulation packages that have been 
augmented with continuous system simulation algorithms. The difficulty here is 
primarily technical, arising from the need to simulate continuous models that require 
advanced simulation algorithms (e.g., implicit integration schemes, special methods 
for stiff systems, and robust event detection schemes). Effective solutions can be 
constructed by first overcoming the issues described in the above paragraphs, and 
then defining an appropriate programming interface for continuous system simulation 
packages. Our proposed approach solves the first two problems, thereby establishing a 
necessary foundation for resolving this technical issue.  

In the last decade, large cascading failures have raised concerns that the current 
control structure for the power grid is, or will be, unable to cope with an increasing 
demand for reliable electric power. Restructuring and deregulation in the electric 
power industry has fundamentally changed power transmission patterns, and new 
market pressures are eliminating capacity margins in both transmission and 
generation. As a result, electric power system operators are observing system 
behaviors that were uncommon in the previous decade, and for which there is limited 
operating experience [8].  

Improving the reliability of electric power grids will require experience with 
uncommon system behaviors, broader situational awareness at regional control 
centers, fast and reliable automatic control beyond what the current protection system 
provides, and active participation by power consumers in the control process. It is 
broadly believed that transmission and generation shortfalls can be addressed in the 
short term by more effective use of existing resources (see, e.g., [16,8]). In the long 
term, elastic demand for electric power will improve the security of the power system 
[13]. This is motivating new and substantial interest in distributed power generation, 
distributed power storage, and demand response systems that rely on advanced 
communication technology (see, e.g., [23,26,15]).  

Electric power grids contain a complex network of electromechanical control devices, 
sensors, and data communication systems. Power system emergencies are dealt with 
by two complementary systems. Automated protection systems act locally to quickly 
and automatically contain localized problems. Wide area control is applied by 
experienced system operators working in regional control centers. These centers use 
remote sensor data obtained through a wide area communication system. It is 
generally accepted that power systems in the future will incorporate data networks to 
enable fast, automatic, and coordinated response to contingencies.  

A power system model that integrates generators, loads, transmission lines, control 
processes, and data networks is an example of a hybrid system. Physical laws that 
dictate the behavior of electromechanical subsystems are described by continuous 
equations, with simple discrete dynamics resulting from circuit breakers, relays, and 
other types of local response mechanisms. Data networks, on the other hand, are 
modeled as discrete event systems whose dynamic behavior is described by chains of 
significant events. Significant events in a communication model include the 
expiration of a timer, sending or receiving a packet, a packet buffer overflow, and 



packet collisions on a shared bus.  

There is little published work that describes techniques for simulating integrated 
models of power systems and network-based, wide area control schemes. Methods 
and tools described in the literature focus on integrating closed software packages 
[14,2]. These methods are driven by the need to integrate software, and the results 
often have limited application or make significant sacrifices of precision and 
accuracy. The scenarios that we consider for the electric grid require the systematic 
construction of non-trivial hybrid models; these models include complex continuous 
and discrete dynamics. The central goal of this paper is to describe a systematic 
approach to model and simulate the complicated interactions between the electric 
power and digital communication systems.  

In Section 2 we give background and discuss related work that sets the stage for our 
proposed approach. We discuss the hybrid simulation challenges and also discuss the 
fundamentals of our hybrid modeling methodology. In Section 3 we map our hybrid 
modeling concept to an implementable formal structure defined in terms of the 
Discrete Event System Specification (DEVS). In Section 4 we discuss the 
implementation principles and a prototype simulation tool that we have constructed. 
Sections 5 and 6 illustrate our approach with a hybrid model of a smart grid system 
that aims to prevent under-frequency failures by using an automatic load control 
scheme.  

2. Modeling Integrated Power, Control, and 
Communication Systems 

The Open Access Same-Time Information System (OASIS) is a Web-based real-time 
bulletin board for monitoring available transmission capacity and coordinating power 
transfers. OASIS was mandated in the mid-1990s by the United States Federal Energy 
Regulatory Commission (FERC) for the North American power grid. OASIS operates 
over the Internet, using the Hyper Text Transport Protocol and IPv4, and it is one of 
the first examples of a network based monitoring and control system used by the 
United States power industry [20].  

OASISNET is an interactive, Web-based simulation program that can be used to 
study the behavior of OASIS networks. It allows system operators to gain experience 
with OASIS through simulation [25]. OASISNET integrates a model of the OASIS 
application, its underlying communication protocol, and a load flow model of the U.S. 
electric power grid. OASISNET users can observe and effect simulated power flows 
through the simulated OASIS application.  

A substation automation architecture described in [6] makes substantial use of 
standardized, packet based communication protocols. In the proposed system, 
intelligent electronic devices are integrated via commercially available Ethernet 
technology to create an integrated substation control system. Understanding, 
improving, and accurately predicting the performance of complex, IP based 
communication and control system will require detailed models of the complete, 
integrated system.  

Futuristic scenarios, in which distributed software systems installed at generators and 
substations automatically detect and respond to problems that could result in power 
system failures, are being seriously considered by some power system research 



organizations [18,3,17,12,5]. These proposals envision software embedded in every 
component of the power system to perform local monitoring and control. Embedded 
control software uses standardized and commercially available communication 
technologies to coordinate rapid control actions over wide geographic area.  

These scenarios illustrate a growing need for integrated simulation of the continuous 
(analog) power systems and discrete (digital) communications and control. The 
EPOCH simulation environment [14] uses simulation middleware to integrate the 
PSCAD/EMTDC electromagnetic transient simulator, the PSLF electromechanical 
transient simulator, and the Network Simulator 2 (NS2) communication network 
simulator. This approach uses available power system and network simulation tools, 
and it thereby significantly reduces model development time. However, the simulation 
software for the power system model is not designed to handle external events. This 
forced the EPOCH designers to fix a synchronization interval for the two simulators, 
possibly introducing substantial errors into the hybrid system model. A similar 
methodology is used in [5] to integrate MATLAB Simulink and NS2.  

Commercial and academic tools for building continuous systems simulations are 
widely available. For example, Modelica (http://www.modelica.org) is a standardized 
language for describing continuous systems, and several Modelica compilers are 
available. Several recent research teams have integrated some discrete event system 
modeling capabilities into existing continuous system simulation tools. A Modelica 
package for simulating statecharts is described in [10]. Mosterman et al [19] showed 
that classic Petri Nets can be simulated with Modelica by using time and state events. 
These efforts have met with considerable success, but they are limited by both 
simulation software performance and the range of discrete event systems that can be 
modeled.  

The SimEvent package from Mathworks, currently being developed as part of the 
MATLAB Simulink environment, promises to overcome problems of expressiveness 
and efficiency by providing a combined tool for modeling continuous and discrete 
event systems. This package has become available only recently, and its internal 
implementation has not, as yet, been discussed in the open literature.  

The solutions described above have a common drawback; they require complex 
discrete event simulations to be rebuilt from scratch for use with a particular 
continuous system simulation package. This presents a significant obstacle to 
studying systems with complex discrete dynamics. This is particularly true when 
attempting to build a model of a modern communication network.  

A more viable approach is to introduce continuous models as components in a 
discrete event simulation. Several decades of research and commercial development 
of continuous system modeling languages have produced standard languages (such as 
Modelica) for describing continuous system models. Model reuse is one of the driving 
goals of these standards. Many continuous system models that are described in this 
way can be compiled into a form that is amenable to integration with discrete event 
simulation tools. At the same time, the simulation code that is produced by the 
compilers can use advanced numerical integration and event detection algorithms.  

Our approach makes it possible to integrate mature continuous system simulation 
technologies with powerful discrete event simulation tools. Discrete event simulation 
packages that accurately model communication networks are widely available. 
Moreover, existing continuous simulation languages can, in principle, be modified so 



that the software produced by their compilers provides hooks for integrating it with 
discrete event simulation tools. For example, the acslXtreme product, from AEgis 
Technologies, has a substantial programming interface to the simulation code 
produced by the ACSL compiler, and extensions to this API for the purpose of hybrid 
system simulation are being considered. In light of these facts, a reasonable path 
forward is to include continuous models in discrete event simulation frameworks; our 
work takes this approach.  

3. A DEVS-based Approach to Hybrid Simulation 

A general approach to integrating continuous models into a discrete event simulation 
framework is described in [27,11]. This approach can avoid problems of 
expressiveness and efficiency with respect to modeling and simulating discrete event 
systems. At the same time, powerful continuous system simulation algorithms can be 
easily incorporated into the proposed framework.  

A hybrid system with discrete input and output dynamics can be described with four 
functions. The first function describes how the continuous, internal state variables 
evolve between discrete events. The second function indicates how much time will 
elapse before the next discrete internal event. The third function determines how the 
system output changes in conjunction with discrete internal events. The fourth 
function describes discrete state change in response to internal (state) and external 
(input) events.  

The dynamics associated with this structure can be summarized as follows. The 
hybrid model is partitioned into a continuous part, possibly with state and time events, 
and a discrete event part. The continuous part is simulated using a continuous system 
simulation algorithm, but it schedules integration time steps using the discrete event 
simulator’s event scheduling mechanism. The discrete event part is simulated without 
change. The continuous system simulator schedules internal (self) events as dictated 
by its numerical integration scheme and event detection algorithm. When self 
scheduled events occur the simulator updates its state variables and, when required, 
schedules events to trigger behaviors in the discrete event part of the system. External 
events are handled just as time events would be handled and a new internal event is 
scheduled based on the new system state. The success of this approach is predicated 
on properly partitioning the system into its discrete and continuous parts.  

This notion of a hybrid system is formalized with a structure  

and the input and output value setsX Y ,  
the internal state setS ,  

the evolution functionF S R S: × → ,   (1) 
the event scheduling functionG S R: → ,  

the discrete action functionA S X SΦ: × → , ,  

where { } and is the non event andX XΦ = ∪ Φ Φ − ,  

the discrete output functionL S Y: → , .  
 

The set X  is the range of values that can be injected into the system. The set Y  is the 
range of values that can be produced by the system. The set S  is the range of the 
system’s internal state variables.  



The evolution function ( )F q h, , with q S∈  and h R∈ , takes the system from a state 
q  at time t  to a later state q′  at time t h+ . This function describes continuous, 
autonomous evolution of the model’s internal state. The system evolves continuously 
until ( ) 0G q =  or a change occurs in the input trajectory. At these points, the discrete 
action function dictates an immediate and, possibly, discontinuous state change.  

The discrete action function ( )A q u, , with u XΦ∈ , determines the response of the 
model to discrete events. These events can be inputs to the system or be triggered by 
its internal dynamics. In either case, the system changes state instantaneously from q  
to ( )q A q u′ = , . Changes due to internal dynamics occur when ( ) 0G q = , and the 
subsequent state of the system is determined by ( )A q,Φ . External events are due to a 
change in the input trajectory. In this case, the state immediately following the event 
is given by ( )A q x, , where x X∈  is the value of the input trajectory immediately 
after the change occurs.  

The discrete output function ( )L q  defines the model’s output trajectory. The initial 
output value is given by 0( )L q , where 0q  is the initial state of the system. Discrete 
changes in the output trajectory occur when ( ) 0G q = . At these times, the output 
trajectory takes the value ( )L q , and it keeps this value until the system again enters a 
state in which G  evaluates to zero.  

The dynamics associated with the structure (1) are defined by associating its elements 
with a DEVS atomic model. The atomic model state set is S , and its input and output 
sets are X  and Y . The state transition, time advance, and output function of the 
atomic model are defined in terms of the evolution function F , event scheduling 
function G , discrete output function L , and discrete action function A . These 
definitions are  

( ) ( ( ( )) )int q A F q ta qδ = , ,Φ  

( ) ( ( ) )ext q e x A F q e xδ , , = , ,  

( ) ( ( ( )) )con q x A F q ta q xδ , = , ,   (2) 

( ) ( )ta q G q=  
( ) ( ( ( )))q L F q ta qλ = ,  

 
In this representation, output and internal events coincide with the expiration of the 
time advance. The discrete output is computed using the system state just prior to the 
discrete event (i.e., prior to applying the discrete action function).  

An implementation of this system will, in general, require events that do not result in 
discrete actions (i.e., an evaluation of A ) or discrete output (i.e., an evaluation of L ). 
These types of events are needed, for instance, when the evolution and event 
scheduling functions are implemented with numerical integration and state event 
detection algorithms (see, e.g., [7]). A DEVS model that is functionally equivalent to 
(2) can be had by defining a function  

IntegStep S R: →  
that picks the next integration step size. The system dynamics are then defined by  



( ( ( )) ) if ( ) ( )
( )

( ( )) otherwise
( ) ( ( ) )
( ) ( ( ( )) )

( ) min{ ( ) ( )}
( ( ( ))) if ( ) ( )

( )
otherwise

int
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con

A F q ta q G q IntegStep q
q

F q ta q
q e x A F q e x
q x A F q ta q x

ta q G q IntegStep q
L F q ta q G q IntegStep q

q

δ

δ
δ

λ

, ,Φ ≤⎧
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 (3) 

 

4. Hybrid System Simulation with adevs and NS2 

A hybrid simulation tool for network-based systems was developed using the NS2 
[22] and adevs [1] simulation packages. Discrete event and continuous sub-processes 
that do not model communications are implemented using adevs. Communication 
specific processes are modeled using NS2. Models developed with adevs are 
integrated into the NS2 simulation model using the simulation control API that is part 
of the adevs simulation software. This API provides a collection for manipulating the 
underlying model as a single discrete event process (specifically, the resultant of the 
DEVS model; see [27]).  

 
Figure 1. The simulation software architecture. 

The adevs simulation software is encapsulated in an NS2 TclObject, and this 
TclObject is used directly by the NS2 simulation. The separation of the model into 
adevs and NS2 components is shown in Fig. 1. NS2 invokes the adevs components 
when two types of events occur:  

1. an internal adevs event  and  

2. receipt of a message at a process modeled within adevs.   

Type 1 events are scheduled by NS2 on behalf of the adevs simulator. One event of 
this type is scheduled at the beginning of the simulation. When a Type 1 event occurs, 
the NS2 simulator performs the following actions:  

1. it queries the adevs module for any network messages that need to be sent,  



2. it schedules NS2 events to send messages returned by the above query,  

3. it tells the adevs component to update its internal state, and  

4. it queries the adevs component for its next event time and schedules a 
corresponding adevs NS2 event.  

Type 1 events cause the NS2 simulator to inject input into the adevs simulator in three 
steps:  

1. inject input events into the adevs component,  

2. tell the adevs component to update its internal state using the injected events, 
and  

3. query the adevs component for its next event time and schedule a 
corresponding adevs event in NS2.  

The DEVS structure (4) is used to simulate continuous processes. A fourth order 
Runge-Kutta integration scheme is used to solve the ODE set whose solution is the 
evolution function F . Zero crossing functions are used to describe the location of 
state events. Time events are scheduled explicitly.  

State events are detected using discontinuity locking in conjunction with interval 
bisection. With this approach, the continuous variables are integrated over a single 
integration step. If the sign of a zero crossing function is unchanged at the end of the 
step, then it is assumed that no state event occurred in the interval. Otherwise, the 
integration step size is halved, and the test is repeated. If this procedure causes the 
step size to reach some small threshold value, then the event is assumed to occur at 
the end of that minimal step size. Our implementation uses the smallest single-
precision floating point value (i.e., the C FLT_MIN macro) as this minimal time step 
value.  

5. Example: Automatic Under-frequency Load Shedding 

In this section, we use a notional system for automatic load control to demonstrate the 
capabilities of our hybrid simulation framework. The continuous component in this 
system is a power generation and transmission model of a 17 bus system that is based 
on the IEEE 14 bus system. To accommodate the power flow calculations for this 
model, three additional buses were added to the IEEE 14 bus model to separate buses 
with both load and generation. The model consists of twelve loads and five generators 
that are interconnected as shown in Fig. 2.  

The power flow and load shedding aspects of this model have been simplified in two 
ways. First, the power system model was developed to study the mechanical response 
of generators to significant load changes and generator or transmission line losses 
[21]. The bus voltages are assumed to remain constant, line resistance and shunt 
reactance are neglected, and a linearized DC power flow is used to calculate the real 
power flows in the network. This simplification is justified because the load control 
mechanism studied here is triggered by frequency variations; consequently voltage 
deviation and reactive power flow are neglected. Second, all loads are assumed to 
have an interruptible component, and every load responds immediately to shedding 
requests. This simplifies both the controller and load model by assuming ideal load 
behaviors. We expect that a model which includes both reactive power flow and 
market driven load behaviors may predict different outcomes from what is shown 



here. Nonetheless, these two simplifications give us a manageable starting point and 
allow for a clearer presentation of the model and its hybrid dynamics.  

 
Figure 2. The 5 generator and 12 load bus power system model. 

The generators are modeled as synchronous machines using the swing equation plus 
additional equations that model a governor, non-reheat turbine, and overspeed 
breaker. One of the five generators also includes a basic Automatic Generation 
Control (AGC) unit that eliminates steady-state frequency error throughout the 
system. The three equations that describe the generator dynamics are  

( )
100( 0 25 )

g

m e

m magc g m

P P M
k R PP P

δ ω

ω
δ ω

Δ = Δ

Δ = Δ −Δ /
Δ = − Δ + Δ / + . Δ +

 

where mPΔ  and ePΔ  are the deviations of mechanical power output and electrical 
demand from the initial steady-state operating point 0P , gδΔ  is the change in the 
relative generator shaft angle, and ωΔ  is the deviation of the shaft angular velocity 
from 60Hz. The values R , M , and agck  are the generator’s speed droop constant, 
rotational inertia, and AGC gain. If the speed deviation of a machine exceeds 0 1± .  
Hz, then it is disconnected from the transmission network.  

Real power flow is calculated from generator shaft angles and electrical power 



demand at the load buses. Disconnected generators are treated as load buses with zero 
power demand [21]. To facilitate the calculation of electrical demand eP  on the 
generators, the network admittance matrix Y  is broken into the four sub-blocks 
shown in Eqn. 6. The llY  block describes load to load connections, lgY  and glY  describe 
the symmetric generator-load/load-generator connections, and ggY  describes generator 
to generator connections. Similarly, the bus angle and electric power vectors are split 
into upper and lower blocks. The vectors lΘ  and lP  denote the load bus angles and 
injected power. The vectors eP  and gΘ  are the electrical demand on the generators 
and the generator shaft angles. The power flow equations are  

lll lgl

ggl gge

Y YP
Y YP

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

⎡ ⎤⎡ ⎤ Θ
= ⎢ ⎥⎢ ⎥ Θ⎣ ⎦ ⎣ ⎦

  (6) 

and the electrical demand on the generators is given by  
1( )ll gll lg

e l ggl gg

Y YP
Y YP

−= −Θ Θ
= + .Θ Θ

 

 

Attached to each generator is a monitor that samples the generator state at a fixed rate 
of 1 T/ . The sampled variables are the generator mechanical power mPΔ , rate of 
change in mechanical power mPΔ , electrical load ePΔ , shaft velocity ωΔ , and shaft 
acceleration ωΔ . At each sampling instant, the monitor estimates time to an under-
frequency failure by  

 

60 0( 1) 59 9 if 0

if 0
ft

ω ω
ω

ω

. Δ + − .⎧ Δ <⎪ Δ= ⎨
⎪ ∞ Δ ≥⎩  

and time to meet demand by 

s

P Pm et
Pm

Δ −Δ
=

Δ
. 

The generator is in danger of being disconnected if 

t tf s≤ . 

In this case, the monitor will broadcast a request asking all load buses to reduce their 
power demand. If, on the other hand, 

t ktf s>  

where k 1>>  is a safety factor, the system is operating under capacity. In this case, 
the monitor will generate a message indicating that electrical power demand can be 
increased. 

Load change requests are summarized by the load service fraction α , with [0 1]α ∈ , . 
When 1α = , the generator can tolerate the full electrical demand seen at its terminal. 
When 1α < , the generator would like to see the demand on its terminal reduced to a 
fraction α  of the full power demand. Changes to α  occur in discrete increments αΔ  



at a maximum rate of 1 T/ .  

The operation of the monitor is depicted graphically in Fig. 3. The monitor state and 
output are computed at each sampling time. Circles denote discrete phases, and the 
action performed in each phase is denoted by state change / output. Arrows denote 
phase change conditions. At each sampling instant, the phase change conditions are 
evaluated and the phase is changed accordingly. Then the output value is produced 
and, subsequently, the state variable change is applied. A new monitor state and 
output is calculated every T  seconds using the sampled generator variable values.   

  
Figure 3. State transition diagram for the generator monitor. 

Load buses remember the last load service fraction received from each monitor. The 
remembered requests are denoted iα , with [1 5]i∈ ,  indicating the monitor that 
produced the request. Each load bus is also aware of its electrical demand. On 
receiving a message, the load bus removes or restores some of its power demand, 
resulting in an overall reduction in demand on the generators. Each bus assumes that 
it produces 1 12/  of the total electrical demand, and that each generator carries 1 5/  of 
the total electrical demand. Therefore, whenever a single generator requests a 
reduction of its load from 1 to α , each load bus disconnects only (1 ) 60α− /  of its 
total electrical demand from the transmission network.  

This reasoning leads to the load control rule that is implemented by each load bus. 
Letting dL  be the full power demand at a load bus, the amount of load served, 
denoted sL , is equal to  

5

1

1 11
12 60s d i

i
L L α

=

⎛ ⎞
= − + .⎜ ⎟

⎝ ⎠
∑  

If the iα  are 1, then all of the demand at the load bus is met (i.e., s dL L= ). Otherwise, 
each load bus sheds a fraction of its electrical demand. However, no individual load 
bus is willing to reduce its power demand by more than 8 3%. , corresponding to all 
the iα  having a value of zero.  

The monitors and load buses communicate through a packet switching network. 
Communication lines follow the network transmission lines, and packets are routed 
from origin to destination through this shared communication medium. The 
communication lines are modeled as queues with a fixed throughput, measured in bits 
per second (bps), and base delay. The time required for a packet to traverse a single 
line is given by  



bits base delay
throughput

+ .  

Each line has a buffer for queuing packets, and only one packet can traverse the 
communication line at any time. No packets are dropped. In general, a message will 
need to travel through several lines before reaching its destination. Network flooding 
is used to implement the broadcast function, with unique packet identifiers used to 
prevent re-broadcasting of packets that have already been processed [24].  

6. EXPERIMENTS 

Two sets of experiments were conducted to study how base line latency and 
throughput impact the effectiveness of the control scheme. A fixed parameter set was 
used for the generators, electrical transmission network, and monitors. The line 
admittances that were used are described in [21]. The initial power 0P  at each 
generator is calculated to ensure steady state at a selected bus angle [21]. Other 
generator parameter selections are listed in Table 1. The controller parameters were 

0 01T = . , 410k = , and 0 1αΔ = . . The size of a control message was fixed at 900 
bytes. Base link latency and throughput were varied independently. Network 
performance is summarized by the time average percentage of load served, i.e.,  

0

1 power supplyPerformance
power demand

endt

end

dt
t

= ∫  

where endt  is the end of the experiment observation time (20 seconds in this case).   

Generator 1 R/ agck
1  300 0  
2 225 200 
3 300 0  
4 300 0  
5  225 0  

 
Table 1. Generator parameters 

 
Load bus 0 0t = . 1 0t = . 10 0t = .

1  0.0    
2 -0.217 
3 -0.942 
4 -0.112 
5 -0.478 
6  -0.076   
7  -0.295 0.0  -0.4  
8  -0.09 0.0  -0.09  
9  -0.035   
10  -0.061 0.0  -0.4  
11  -0.135 0.0  -0.135  
12 -0.149 0.0 -0.149  

 
Table 2. Electrical demand schedule 



 
Figure 4. System failure in the absence of any load control scheme. 

 
Figure 5. Generator frequencies when base line delay is 130ms and throughput is 1Mbps. 

 
Figure 6. Total demand, served demand, and service fractions when base line delay is 130ms and 

throughput is 1Mbps. 



 
Figure 7. Generator frequencies when base line delay is 50ms and throughput is 1Mbps. 

 
Figure 8. Total demand, served demand, and service fractions when base line delay is 50ms and 

throughput is 1Mbps. 

 
Figure 9. Performance as a function of latency with throughput fixed at 1Mbps. 



 
Figure 10. Generator frequencies when line throughput is 256Kbps and base latency is 20ms. 

 
Figure 11. Total demand, served demand, and service fractions when line throughput is 256Kbps 

and base line delay is 20ms. 

 
Figure 12. Performance as a function of throughput with base latency fixed at 20ms. 



 
Figure 13. Number of load shedding events as a function of throughput with base latency fixed at 

20ms. 
The electrical demand schedule that was used in these experiments is shown in Table 
2. The 0t =  column shows initial power demand at each bus. Subsequent columns 
contain an entry only for buses at which the power demand changes. Electrical 
demand is described by per unit power injected at the load bus. Without any load 
control, this schedule causes all five generators trip offline following the load spike at 

10t =  seconds. The failure scenario is shown in Figure 4.  
In the first set of experiments, the network throughput was fixed at 1Mbps, and the 
base line latency was varied between 20ms and 135ms. The five generators fail 
shortly after 10t =  in the 135ms scenario. The generator frequency, load service 
fractions, and electrical supply and demand totals for the 130ms scenario are shown in 
Fig. 5 and 6. This is the upper end of the survivable latency range, and there is a 
noticeable ripple in the system frequency that is caused by oscillations of the load 
service fraction at generators three and five. These ripples disappear and the system 
reaches a stable state at 50ms of latency, as shown in Figs. 7 and 8.  

Figure 9 shows how the controller performance varies as a function of base line 
latency. The controller performance decreases gradually as the base latency increases. 
Catastrophic failure occurs when the base line latency reaches 135ms (not shown in 
the figure).  

In the second set of experiments, the base line latency was fixed at 20ms and the 
throughput varied between 115Kbps and 10Gbps. The system fails at 115Kbps with 
all of the generators tripping offline. The generator frequency, load service fractions, 
and electrical supply and demand totals for the 256Kbps scenario are shown in Fig. 10 
and 11. The system behaves nicely in this case, with the served load meeting demand 
approximately 5 seconds after the load spike at 10t = . The network performance as a 
function of throughput is shown in Fig. 12. The performance actually decreases as 
additional throughput becomes available, reaching minimum performance at 30Mbps, 
and then stabilizing near 99 65%.  at 100Mbps. Fig. 13 shows that the number of load 
shedding events changes as the line throughput changes. The number of load shedding 
events stabilizes as the performance metric stabilizes.  

The surprising drop in performance as throughput increases is due to the complex 
interaction of the control scheme, electrical power flow, and communication network. 
As the link bandwidth changes, the queuing behavior in the network changes, and this 



affects the order in which the loads are shed from the system. Because individual 
loads vary in size, the order in which they are reduced substantially impacts the 
behavior of the electrical network and load control system. Moreover, the impact of a 
particular load shedding event is dependent on when it occurs and where it is located 
in the network. The combined effect on overall system behavior would be difficult to 
anticipate without an integrated, dynamic model of the power, control, and 
communication systems.  

7. Conclusions 

Power grid modernization efforts need powerful modeling and simulation tools for 
hybrid systems. Improved situational awareness, substation automation, and 
distributed monitoring and control all presume the use of modern communication 
technology. The interaction of communication networks and the electric power 
system will be difficult to study without the aid of accurate models and efficient 
simulation environments.  

Powerful modeling languages for continuous systems are already available. Models 
described in these languages can, in many cases, be compiled into a form that is 
amenable to integration with discrete event simulation tools. When compilers for 
these languages provide this capability it will be possible to build the complicated, 
large-scale hybrid models that are needed for engineering future power systems. In 
this paper we have shown that this can be done and demonstrated the key elements of 
our particular approach.  

Modeling the continuous and discrete systems together, in a manner that preserves our 
formal definition of the hybrid dynamics, is the central contribution of this paper. We 
leveraged the DEVS methodology to create a hybrid model and simulate it using 
adevs and NS2. Our experiments with a load shedding scenario exposed behaviors 
that can only be observed with an integrated hybrid model. In particular, we find that 
the communication network affects the order of load shedding and that available 
bandwidth and network latency have a significant effect on the controller behavior. 
Identifying these behaviors requires detailed simulations. Because it is intractable to 
create analytical models of these integrated systems, simulation is necessary. Analysis 
of complex, integrated discrete and continuous processes requires accurate simulation 
techniques; our approach addresses this need.  
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