



## **Design Issues**

- Provide a well-defined service interface
- Group bits (PHY) into frames (DL)
- Deal with transmission errors
- Regulate the flow of frames



























| Parity Bit                                                                                                                         |  |
|------------------------------------------------------------------------------------------------------------------------------------|--|
| <ul> <li>Even parity</li> <li>Odd parity</li> </ul>                                                                                |  |
| <ul> <li>A code with a single parity bit has a<br/>Hamming distance of ???</li> <li>It can be used to detect ??? errors</li> </ul> |  |
|                                                                                                                                    |  |



| imple                                                              |                                        |
|--------------------------------------------------------------------|----------------------------------------|
| 00000                                                              | 20000                                  |
| 00000                                                              | 11111                                  |
| 11111(                                                             | 00000                                  |
| 11111                                                              | 11111                                  |
| The code has a Har<br>It can detect ??? er<br>It can correct ??? e | nming distance of ???<br>rors<br>rrors |
| Arrival                                                            | Original                               |
| 0000000111                                                         | 0000011111                             |
| 000000111                                                          | 000000000                              |



| * <sup>-</sup><br>2<br>9<br>( | <b>Theorem:</b> Given a code with <i>m</i> message bits<br>and <i>r</i> check bits ( $n=m+r$ ) which allows all<br>single errors to be corrected, the lower limit<br>on <i>r</i> is (m+r+1)<=2 <sup>r</sup> |
|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                               | <ul> <li>Hamming code (the bits that are power of 2<br/>are check bits, others are message bits,<br/>each check bit forces the parity of some<br/>collection of bits, including itself)</li> </ul>          |
|                               | - Can only correct single bit error                                                                                                                                                                         |



| Example - | Hamming Code |  |
|-----------|--------------|--|
| 10010000  |              |  |
|           |              |  |
|           |              |  |
|           |              |  |
|           |              |  |



| How to Cor                           | rect B                                                                                                     | Burst Errors                                         |
|--------------------------------------|------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| Uses kr chec                         | k bits to                                                                                                  | o make blocks of <i>km</i>                           |
| data bits imr                        | nune to                                                                                                    | a single burst error                                 |
| of length k o                        | r less                                                                                                     | <b>``</b>                                            |
| Char.                                | ASCII                                                                                                      | Check bits                                           |
| H<br>m<br>i<br>n<br>g<br>c<br>c<br>d | 1001000<br>1100001<br>1101101<br>1101101<br>1101001<br>1101110<br>1100111<br>0100000<br>1100011<br>1101111 | 0011001000<br>10111001001<br>11101010101<br>01100100 |
| •                                    | 1100101                                                                                                    | 00111000101                                          |







| Error-Detecting<br>Codes                                                                                                                                                                                                                                                                                                            | Prame : 1101011011<br>Generator: 10011<br>Message after 4 zero bits are appended: 110101101101000<br>110010 1101010101<br>10011 101101000<br>10011 101101101000 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Polynomial code (CRC –<br/>Cyclic Redundancy Check)</li> <li>Generator polynomial G(x)</li> <li>Message polynomial M(x)</li> <li>Method: append a checksum<br/>of r bits to the end of M(x)<br/>such that the appended<br/>polynomial T(x) is divisible by<br/>G(x)</li> <li>Q(x) R(x) = x<sup>r</sup>M(x)/G(x)</li> </ul> | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                          |
| $T(x) = x^{r}M(x) + R(x)$                                                                                                                                                                                                                                                                                                           | 0 1 1 1 0<br><u>0 0 0 0 0</u><br>1 1 1 0<br>                                                                                                                    |



| M | ore on Polynomial Code                                                                                                                                                                                                                                                        |
|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ٠ | Single error detection?                                                                                                                                                                                                                                                       |
| ۲ | Double error detection?                                                                                                                                                                                                                                                       |
| ۲ | No polynomial with an odd number of terms is divisible<br>by x+1                                                                                                                                                                                                              |
| ۲ | A polynomial code with r check bits will detect all burst errors of length <=r                                                                                                                                                                                                |
|   | <ul> <li>Burst error: at least the first and the last bits of a bit stream a<br/>wrong</li> </ul>                                                                                                                                                                             |
| ۲ | Hardware implementation: shifted register circuit                                                                                                                                                                                                                             |
| ۲ | International standard of G(x)<br>• X <sup>32</sup> +X <sup>26</sup> +X <sup>22</sup> +X <sup>22</sup> +X <sup>16</sup> +X <sup>12</sup> +X <sup>11</sup> +X <sup>10</sup> +X <sup>6</sup> +X <sup>7</sup> +X <sup>5</sup> +X <sup>4</sup> +X <sup>2</sup> +X <sup>1</sup> +1 |