ECE453 - Introduction to

 Computer NetworksLecture 9 - The Network Layer (I)

- Routing
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Network Core - Information
 Transmission

Circuit switching

- Telephone system
- Message switching
- Mail delivery
- The message travels as a complete unit. At any one time, it completely exists in one place.
- Packet switching \qquad
- The Internet
\qquad
\qquad
\qquad
\qquad
\qquad

Design Issues

Store-and-forward packet switching
Services to the transport layer \qquad

- Connection-oriented vs. Connectionless
- Quality of service (QoS)
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Network Layer Services

Connectionless

- Best-effort
- No guarantee
- The Internet
- No advance setup is needed
- Datagram subnet
- Connection-oriented
- Guaranteed delivery
- ATM
- A path from the source router to the destination router is established before any data packets can be sent
- Virtual circuit
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Different Strategies

- Nonadaptive algorithms (or static routing)

Adaptive algorithms (or dynamic routing)

- Global algorithm (have a global knowledge - a map)
- Decentralized algorithm (get information only from neighbor)
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Graph Abstraction for Routing Algorithms

Graph nodes \leftrightarrow Routers
Graph edge \leftrightarrow Physical links
© Edge weight \longleftrightarrow Link cost
Link cost

- Delay, power consumption, congestion level, \$cost, etc.
- Good path or optimal path
- Minimum link cost

Two Fundamental Routing Algorithms

Link state routing

- A global algorithm
- Distance vector routing (or Bellman-

Ford routing, Ford-Fulkerson routing)

- A decentralized algorithm
- The original ARPANET routing algorithm, replaced by LS routing in 1979

A Link State Routing Algorithm

Dijkstra's algorithm

-Net topology, link costs known to all nodes

- accomplished via "link state broadcast" \qquad
- all nodes have the same info
-computes least cost paths from the \qquad
source to all other nodes
- Iterative algorithm
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Step	start N	$D(B), p(B)$	$D(C), p(C)$	$D(D), p(D)$	$D(E), p(E)$	$D(F), p(F)$
$\longrightarrow 0$	A	2,A	5, A	1,A	infinity	infinity
$\rightarrow 1$	AD	2,A	4,D		2,D	infinity
$\rightarrow 2$	ADE	2,A	3,E			4,E
$\longrightarrow 3$	ADEB		3,E			4,E
$\xrightarrow{ }$	ADEBC					4,E
5	ADEBCF					

\qquad
\qquad

Dijkstra's Algorithm: Discussion

Algorithm complexity: n nodes

- each iteration: need to check all nodes, not in N
- $n^{*}(n+1) / 2$ comparisons: $O(n * * 2)$
- more efficient implementations possible: O(nlogn)

Oscillations possible:

- e.g., link cost = amount of carried traffic

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

DV Routing

Each router maintains a distance table

- Initialization
- 0 for itself
- Infinity for non-neighbor
- Link cost for neighbor
- Message exchange between neighbors
- When a neighbor first comes up
- When information changes (e.g. change in link cost)
- Distance vector calculation
- Minimize cost to each destination

Iterative routing Distributed routing 15

\qquad
\qquad
\qquad
\qquad
\qquad

DV: Link Cost Changes

\qquad
\qquad

\qquad
\qquad
\qquad
\qquad

DV: Link Cost Changes

\qquad
\qquad

18

