

-		
	<i>"Mobility is essentially an address translation problem and is best resolved at the network layer"</i>	
		4

Mobile Ad Hoc Networking - MANET	
A mobile, ad hoc network is an autonomous system of mobile hosts connected by wireless links.	
There is no static infrastructure such as base stations.	
No centralized administration	
Infrastructureless networking	
Each node is both an end-host and a router	
10	

Why Ad Hoc Networks ? Ease of deployment Speed of deployment Decreased dependence on infrastructure Many applications Personal area networking (cell phone, laptop, ear phone, wrist watch) Military environments (soldiers, tanks, planes) Civilian environments (taxi cab network, meeting rooms, sports stadiums, boats, small aircraft) Emergency operations (search-and-rescue, policing and fire fighting)

MA	NET Characteristics
📀 Dyr	namic topologies
🔶 Bar	ndwidth-constrained
= C	ongestion is typically the norm rather than the exception
🔶 Ene	ergy-constrained operation
= re e	ely on batteries or other exhaustible means for their nergy
🔷 🔶 Lim	ited physical security
ir d	ncreased possibility of eavesdropping, spoofing, and enial-of-service attacks
 Sor net larg 	ne envisioned networks (e.g. mobile military works or highway networks) may be relatively le
• e	.g. tens or hundreds of nodes per routing area

Routing Protocols	
♦ Proactive protocols	
 Determine routes independent of traffic pattern 	
 Traditional link-state and distance-vector routing protocols are proactive 	
Reactive protocols	
 Maintain routes only if needed 	
Hybrid protocols	
13	5

-looding	for Data Delivery
Sender S b neighbors	proadcasts data packet P to all its
Each node neighbors	receiving P forwards P to its
 Sequence possibility more than 	numbers used to avoid the of forwarding the same packet once
Packet P re D is reacha	eaches destination D provided that able from sender S
Node D do	es not forward the packet

Flooding for Data Delivery: Advantages	
 Simplicity May be more efficient than other protocols when rate of information transmission is low enough that the overhead of explicit route discovery/maintenance incurred by other protocols is relatively higher this scenario may occur, for instance, when nodes transmit small data packets relatively infrequently, and many topology changes occur between consecutive packet transmissions 	
 Potentially higher reliability of data delivery Because packets may be delivered to the destination on multiple paths 	

Flooding for Data Delivery: Disadvantages	
 Potentially, very high overhead Data packets may be delivered to too many nodes who do not need to receive them Potentially lower reliability of data delivery Elonging uses broadcasting bard to implement 	
reliable broadcast delivery without significantly increasing overhead Broadcasting in IEEE 802.11 MAC is unreliable	
 In our example, nodes J and K may transmit to node D simultaneously, resulting in loss of the packet in this case, destination would not receive the packet at all 	
23	

Dynamic Source Routing (DSR) [Johnson96]	
When node S wants to send a packet to node D, but does not know a route to D, node S initiates a route discovery	
Source node S floods Route Request (RREQ)	
Each node appends own identifier when forwarding RREQ	
25	

Dynamic Source Routing (DSR)	
Node S on receiving RREP, caches the route included in the RREP	
 When node S sends a data packet to D, the entire route is included in the packet header hence the name source routing 	
Intermediate nodes use the source route included in a packet to determine to whom a packet should be forwarded	
34	

