Capacitors and Inductors

William H. Hayt, Jr. + Jack E. Kemmerly + Steven M. Durbin

Engineering Circuit Analysis

Eighth Edition

The Capacitor

the ideal capacitor is a passive element with circuit symbol
i C

+

the current-voltage relation is

• the capacitance *C* is measured in farads (F)

Copyright © 2013 The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

 $i = C \frac{dv}{dt}$

Some Capacitors

 capacitors can be bulky and typical values range from pF to µF

(a)

(b)

(c)

Capacitors Store Energy

Since
$$p(t) = i(t)v(t) = \left(C\frac{dv}{dt}\right)v = \frac{dw}{dt}$$

then the energy stored in a capacitor is

$$w = \frac{1}{2}Cv^2$$

Key Capacitor Behaviors

- capacitors are open circuits to dc voltages
- the voltage on a capacitor *cannot* jump
- capacitors store energy (*iv*>0) or deliver energy (*iv*<0)

Example: i-v Curves (part 1 of 2)

Copyright © 2013 The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Example: i-v Curves (part 2 of 2)

Solution: apply i(t)=2dv/dt and graph:

Copyright © 2013 The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Example: i-v Curves

Show that the following graphs are matching voltage and current graphs for a capacitor of $C=5\mu F$.

Example: Capacitor Energy

Determine the maximum energy stored in the capacitor, and plot i_R and i_C .

The Inductor

- the ideal inductor is a passive element with circuit symbol $i_L = L$
- the current-voltage relation is $v = L \frac{di}{dt}$

• the unit of inductance L is henry (H)

Copyright © 2013 The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

 v_L

+

Some Inductors

 inductors can be bulky and typical values range from µH to H

Inductors Store Energy

Since
$$p(t) = i(t)v(t) = \left(L\frac{di}{dt}\right)i = \frac{dw}{dt}$$

then the energy stored in a inductor is

$$w = \frac{1}{2}Li^2$$

Key Inductor Behaviors

- inductors are short circuits to dc voltages
- the current through an inductor *cannot* jump
- inductors store energy (*iv*>0) or deliver energy (*iv*<0)

Example: i-v Curves for L

Show that the following graphs are matching voltage and current graphs for an inductor of L=3 H.

Example: i-v Curves for L

For the same 3-H inductor, the voltages are 10 times larger when the current is ramped 10 times faster:

Example: Energy in L

Determine the maximum energy stored in the inductor, and find the energy lost to resistor from t=0 to t=6 s. $i = 0.1 \Omega$

Answer: 216 J, 43.2 J

Inductors in Series

Apply KVL to show:

$$L_{eq} = L_1 + L_2 + \dots + L_N$$

Inductors in Parallel

Apply KCL to show

Copyright © 2013 The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Capacitors in Series

Apply KVL to show:

Capacitors in Parallel

Apply KCL to show:

$$C_{eq} = C_1 + C_2 + \dots + C_N$$

Two-Element Shortcuts

Two capacitors in *series*:

$$C_{eq} = \frac{C_1 C_2}{C_1 + C_2}$$

Two inductors in parallel:

$$L_{eq} = \frac{L_1 L_2}{L_1 + L_2}$$

Two resistors in parallel: R_{eq}

$$R_{eq} = \frac{R_1 R_2}{R_1 + R_2}$$

Example: Simplifying LC

Op Amp Integrator

Copyright © 2013 The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Op Amp Differentiator

 $\frac{dv_s}{dv_s}$ $-C_1R_f$ V_{out}