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Frequency Response	
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Frequency Response	


(Cascade Connection of Lowpass and Highpass)	
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Lowpass Filter H s( ) = ω c

s +ω c

H jω( ) = ω c

jω +ω c

Highpass Filter H s( ) = s
s +ω c

H jω( ) = jω
jω +ω c

Bandpass Filter H s( ) = ω cbs
s + ω ca +ω cb( )s +ω caω cb

H jω( ) = jωω cb

jω( )2 + jω ω ca +ω cb( ) +ω caω cb



Frequency Response	

Frequency response magnitudes of the filters on the previous slide	
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Frequency Response	


 Bandstop Filter  H s( ) = s2 + 2ω cbs +ω caω cb

s2 + ω ca +ω cb( )s +ω caω cb

H jω( ) = jω( )2 + j2ωω cb +ω caω cb

jω( )2 + jω ω ca +ω cb( ) +ω caω cb
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Frequency Response	

A biquadratic filter can be realized as a second-order system.
Adjusting the parameter β  changes the nature of the frequency 
response.  It can emphasize or de-emphasize frequencies near 
its center frequency.
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Frequency Response	

A bank of cascaded biquadratic filters can be used as a	

graphic equalizer	
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Ideal Filters 	

•  Filters separate what is desired from what is 

not desired	

•  In the signals and systems context a filter 

separates signals in one frequency range from 
signals in another frequency range	


•  An ideal filter passes all signal power in its 
passband without distortion and completely 
blocks signal power outside its passband	
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Distortion	

•  Distortion is construed in signal analysis to mean “changing 

the shape” of a signal	

•  Multiplication of a signal by a constant (even a negative one) 

or shifting it in time do not change its shape	


No Distortion	
 Distortion	
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Distortion	


h t( ) = Aδ t − t0( )

Since a system can multiply by a constant or shift in time without 	

distortion, a distortionless system would have an impulse response 	

of the form	


The corresponding 	

frequency response is	


H f( ) = Ae− j2π ft0
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Filter Classifications	

There are four commonly-used classification of filters, lowpass,	

highpass, bandpass and bandstop.	
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Filter Classifications	




12/29/10	
 M. J. Roberts - All Rights Reserved	
 14	


Bandwidth	


•  Bandwidth generally means “a range of 
frequencies”	


•  This range could be the range of frequencies 
a filter passes or the range of frequencies 
present in a signal	


•  Bandwidth is traditionally construed to be 
range of frequencies in positive frequency 
space	
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Bandwidth	

Common Bandwidth Definitions	
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Impulse Responses of Ideal Filters	
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Impulse Response and Causality	


•  All the impulse responses of ideal filters 
contain sinc functions, alone or in 
combinations, which are infinite in extent	


•  Therefore all ideal-filter impulse responses 
begin before time t = 0	


•  This makes ideal filters non-causal	

•  Ideal filters cannot be physically realized, but 

they can be closely approximated	
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Impulse and Frequency Responses 
of Causal Filters	
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Impulse and Frequency Responses 
of Causal Filters	
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Impulse and Frequency Responses 
of Causal Filters	
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Impulse and Frequency Responses 
of Causal Filters	
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The Power Spectrum	
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Noise Removal	

A very common use of filters is to remove noise from a signal.  If	

the noise bandwidth is much greater than the signal bandwidth a 	

large improvement in signal fidelity is possible.	




The Decibel	


The bel B( ) named in honor of Alexander Graham Bell( ) is defined 
as the common logarithm (base 10) of a power ratio.  So if the excitation 
of a system is X and the response is Y, the power gain of the system is 
PY / PX.  Expressed in bels that would be

       PY / PX( )B = log10 PY / PX( ) = log10 Y
2 / X 2( ) = 2 log10 Y / X( )

Since the prefix deci means one-tenth, that same power ratio expressed in
decibels dB( )would be
                  PY / PX( )dB = 10 log10 PY / PX( ) = 20 log10 Y / X( )
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If a frequency response magnitude is the magnitude of the ratio of a 
system response to a system excitation

                                         H jω( ) = Y jω( )
X jω( )

then that magnitude ratio, expressed in decibels, is

H jω( ) dB
= 20 log10 H jω( ) = 20 log10

Y jω( )
X jω( ) = Y jω( ) dB

− X jω( ) dB

The Decibel	
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Log-Magnitude Frequency-
Response Plots	


Consider the two (different) transfer functions,

H1 jω( ) = 1
jω +1

and H2 jω( ) = 30
30 −ω 2 + j31ω

When plotted on this scale, these magnitude frequency response 
plots are indistinguishable.
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Log-Magnitude Frequency-
Response Plots	


When the magnitude frequency responses are plotted on	

a logarithmic scale (in dB) the difference is visible.	
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Bode Diagrams	

A magnitude-frequency-response Bode diagram is a graph of 
the frequency response 
magnitude in dB against 
a logarithmic frequency 
scale.  

H1 jω( ) = 1
jω +1

H2 jω( ) = 30
30 −ω 2 + j31ω
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Bode Diagrams	


 

Continuous-time LTI systems are described by equations
of the general form,

                        ak
dk

dt k
y t( )

k=0

N

∑ = bk
dk

dt k
x t( )

k=0

M

∑
The corresonding transfer function is

                H s( ) = bM s
M + bM −1s

M −1 ++ b1s + b0

aNs
N + aN−1s

N−1 ++ a1s + b0
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Bode Diagrams	


 

The transfer function can be written in the form

          H s( ) = A 1− s / z1( ) 1− s / z2( ) 1− s / zM( )
1− s / p1( ) 1− s / p2( ) 1− s / pN( )

where the z’s are the values of s at which the frequency response 
goes to zero and the p’s are the values of s at which the frequency 
response goes to infinity.  These z’s and p’s are commonly referred 
to as the zeros and poles of the system.  The frequency response is

          H jω( ) = A 1− jω / z1( ) 1− jω / z2( ) 1− jω / zM( )
1− jω / p1( ) 1− jω / p2( ) 1− jω / pN( )
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Bode Diagrams	

From the factored form of the frequency response a system can	

be conceived as the cascade of simple systems, each of which	

has only one numerator factor or one denominator factor.  Since	

the Bode diagram is logarithmic, multiplied frequency responses 	

add when expressed in dB.	
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Bode Diagrams	

System Bode diagrams are formed 	

by adding the Bode diagrams 	

of the simple systems which are in 	

cascade.  Each simple-system 	

diagram is called a component 	

diagram.  	


             One Real Pole	


H jω( ) = 1
1− jω / pk
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Bode Diagrams	

Let the frequency response 
of a lowpass filter be

H jω( ) = 1
j50 ×10−6ω +1

This can be written as

H jω( ) = 1

1− jω
−20,000( )

Its Bode diagram has one corner
frequency at ω = 20,000.
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Bode Diagrams	


One Real Zero	


H jω( ) =1− jω / zk
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Bode Diagrams	


Integrator	

(Pole at zero)	


H jω( ) = 1 / jω
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Bode Diagrams	


Differentiator	

(Zero at zero)	


� 

H jω( ) = jω
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Bode Diagrams	


Frequency-Independent	

Gain	


                  H jω( ) = A

(This phase plot is for A > 0.  If
A < 0, the phase would be a constant
π  or −π  radians.)
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Bode Diagrams	

Complex 
Pole Pair 

H jω( ) = 1

1− jω
p1

⎛
⎝⎜

⎞
⎠⎟

1− jω
p2

⎛
⎝⎜

⎞
⎠⎟

= 1

1− jω
2Re p1( )
p1

2 +
jω( )2

p1
2

 

The natural radian 
frequency ωn  is
defined by
          ωn

2 = p1p2

The damping ratio ζ
is defined by

      ζ = − p1 + p2

2 p1p2
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Bode Diagrams	

Complex 	

Zero Pair	


� 

H jω( ) = 1− jω
z1

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 1−

jω
z2

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ = 1− jω 2Re z1( )

z1
2 +

jω( )2

z1
2
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Practical Passive Filters	


� 

H jω( ) = Vout jω( )
Vin jω( )

= Zc jω( )
Zc jω( ) + ZR jω( ) = 1

jωRC +1

RC Lowpass Filter	




12/29/10	
 M. J. Roberts - All Rights Reserved	
 41	


Practical Passive Filters	


� 

H f( ) =
Vout f( )
Vin f( ) =

j 2πf
RC

j2πf( )2 + j 2πf
RC

+ 1
LC

RLC Bandpass Filter	
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Practical Active Filters	


The ideal operational amplifier has infinite input impedance, 	

zero output impedance,  infinite gain and infinite bandwidth.	


H s( ) = Vo s( )
Vi s( ) = −

Z f s( )
Zi s( ) H s( ) = Z f s( ) + Zi s( )

Zi s( )

Operational Amplifiers	




12/29/10	
 M. J. Roberts - All Rights Reserved	
 43	


Practical Active Filters	

Active Integrator	


 

Vo f( ) = − 1
RC

Vi f( )
j2π f

Fourier transform
of integral  of Vi f( )
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Practical Active Filters	

Active RC Lowpass Filter	


Vo f( )
Vi f( ) = −

Rf

Ri
1

j2π fCRf +1
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Practical Active Filters	


An integrator with feedback is a lowpass filter.	


′y t( ) + y t( ) = x t( )

 H jω( ) = 1
jω +1

Lowpass Filter	




Discrete Time	
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Distortion	

•  Distortion means the same thing for discrete-time 

signals as it does for continuous-time signals, 
changing the shape of a signal	


No Distortion	
 Distortion	
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Distortion	


A distortionless system would 
have an impulse response 
of the form,
h n[ ] = Aδ n − n0[ ]
The corresponding 
transfer function is

H e jΩ( ) = Ae− jΩn0
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Filter Classifications	
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Filter Classifications	




12/29/10	
 M. J. Roberts - All Rights Reserved	
 51	


Impulse Responses of Ideal Filters	
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Impulse Response and Causality	


•  Discrete-time ideal filters are non-causal for 
the same reason that continuous-time ideal 
filters are non-causal	
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Impulse and Frequency Responses 
of Causal Filters	
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Impulse and Frequency Responses 
of Causal Filters	
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Impulse and Frequency Responses 
of Causal Filters	
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Impulse and Frequency Responses 
of Causal Filters	
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Causal Lowpass	

Filtering	


of Rows in 	

an Image	


Causal Lowpass	

Filtering	


of Columns in 	

an Image	


Two-Dimensional Filtering of Images	
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“Non-Causal” 	

Lowpass	

Filtering	


of Rows in 	

an Image	


“Non-Causal” 	

Lowpass	

Filtering	


of Columns in 	

an Image	


Two-Dimensional Filtering of Images	
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Causal 	

Lowpass	

Filtering	


of Rows and	

Columns in 	

an Image	


“Non-Causal” 	

Lowpass	

Filtering	


of Rows and	

Columns in 	


an Image	


Two-Dimensional Filtering of Images	
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Discrete-Time Filters	

Lowpass Filter	


H e jΩ( ) = e jΩ

e jΩ − 0.8

h n[ ] = 4 / 5( )n u n[ ]
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Discrete-Time Filters	

Comparison of a discrete-time lowpass filter impulse 	

response with an RC passive lowpass filter impulse 	

response	
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Discrete-Time Filters	

Discrete-time Lowpass Filter 	


Frequency Response	

RC Lowpass Filter 	


Frequency Response	
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Discrete-Time Filters	

Highpass	


Bandpass	
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Discrete-Time Filters	

Bandstop	
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Discrete-Time Filters	

Moving-Average Filter	


  h n⎡⎣ ⎤⎦ = u n⎡⎣ ⎤⎦ − u n − N⎡⎣ ⎤⎦( ) / N

  

H e jΩ( ) = e− j N −1( )Ω/2

N
sin NΩ / 2( )
sin Ω / 2( )

           = e− j N −1( )Ω/2 drcl Ω / 2π , N( )

Always Stable	
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Discrete-Time Filters	

Ideal Lowpass	


Filter Impulse Response	


Almost-Ideal Lowpass	

Filter Impulse Response	


Almost-Ideal Lowpass	

Filter Magnitude Frequency 	


Response	
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Discrete-Time Filters	


Almost-Ideal Lowpass	

Filter Magnitude Frequency 	


Response in dB	
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Advantages of Discrete-Time Filters	


•  They are almost insensitive to environmental effects	

•  Continuous-time filters at low frequencies may require very 

large components, discrete-time filters do not	

•  Discrete-time filters are often programmable making them 

easy to modify	

•  Discrete-time signals can be stored indefinitely on magnetic 

media, stored continuous-time signals degrade over time	

•  Discrete-time filters can handle multiple signals by 

multiplexing them	



