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Receivers for CW Modulation
In addition to demodulation a receiver must
1.    Select the desired signal
2.    Reject the other signals
3.    Amplify the signal
Some of the amplification should occur before demodulation because the 
demodulator typically does not work well with small signals (usually
because of non-zero forward bias diode voltages).  These functions could be 
performed by a high-gain, tunable, bandpass amplifier.  We could follow this
amplifier with an envelope detector to recover the information signal.  The 
problem with this approach is that the high-gain, tunable, bandpass amplifier 
with a constant bandwidth equal to the transmitted bandwidth is difficult to 
design and expensive to produce.



Receivers for CW Modulation
An alternative to the previous design would be to use a synchronous detector
instead of an envelope detector.  But we still have the problem of the design
and expense of the high-gain, tunable bandpass amplifier and now we must
also have a local oscillator locked to the incoming carrier frequency and phase.  
This design is worse than the previous one.



Receivers for CW Modulation
Instead of using a high-gain, tunable bandpass amplifier we could use a high-gain
broadband amplifier and do all the filtering with a lowpass filter of bandwidth W
after demodulation.  This avoids the tunable bandpass amplifier design problem.
This design is better than the previous one but still has the problem of locking the
local oscillator to the incoming carrier frequency and phase.



Receivers for CW Modulation

A design that avoids the problems of the previous designs is the 
superheterodyne receiver.  Instead of mixing the incoming signal
directly to baseband, mix it down to an intermediate frequency (IF) 
and bandpass filter it there with a fixed bandpass filter of bandwidth 
2W .   Then use an envelope detector to recover the information signal. 



Receivers for CW Modulation
The superheterodyne receiver has two amplification and filtering stages prior to 
demodulation.  The first one is an RF amplifier/bandpass filter centered at the
carrier frequency of the station we wish to demodulate.  Its bandwidth BRF  is
adequate to pass the transmission bandwidth BT  comfortably.  This is the selection 

stage.  The received signal at the antenna is xRFi t( ) = Ack 1+ µk xk t( )( )cos ω ckt( )
k=1

N

∑  

where N  is the number of AM stations within reception range.  The spectrum of 
received stations is 

XRFi f( ) = Ack / 2( ) δ f − fck( ) +δ f + fck( ) + µk Xk f − fck( ) + Xk f + fck( )⎡⎣ ⎤⎦{ }
k=1

N

∑



Receivers for CW Modulation
The RF amplifier filters the received signal with a bandpass filter centered at the
carrier frequency of the desired station and produces the signal 
XRFo f( ) = XRFi f( )HBP f( ).  Suppose there are four stations with significant signal
strengths at carrier frequencies fc1 = 670 kHz,  fc2 = 990 kHz,  fc3 = 1180 kHz and 
fc4 = 1580 kHz.  Then

 XRFo f( ) = HBP f( )
2

Ack δ f − fck( ) +δ f + fck( )⎡⎣ ⎤⎦ + µk Xk f − fck( ) + Xk f + fck( )⎡⎣ ⎤⎦{ }
k=1

4

∑
Also, suppose we want to receive the station at 670 kHz.  Then the bandpass amplifier's
frequency response will be centered at 670 kHz.



Receivers for CW Modulation



Receivers for CW Modulation

 

The output signal from the RF amplifier is mixed with (multiplied by) the local 
oscillator signal.  The RF center frequency fc  and the local oscillator frequency fLO  
are coupled together such that fLO = fc ± fIF  where fIF  is the intermediate frequency .  
The relation fLO = fc ± fIF  implies that fc − fLO = fIF . 
 

x IFi t( ) = xRFo t( )cos ω LOt( ) F← →⎯ XIFi f( ) = 1 / 2( ) XRFo f − fLO( ) + XRFo f + fLO( )⎡⎣ ⎤⎦.

The IF input signal is 

XIFi f( ) = HBP f( )
4
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Receivers for CW Modulation
The two stations at 670 and 1580 both shift to be centered at 455 kHz.  
So, unless the 1580 signal has been filtered out by the RF amplifier, we 
will have crosstalk (hearing two stations at once). The signal at 1580
is at the image frequency of 670 (670 + 2 × 455).



Receivers for CW Modulation

There are several parameters or "figures of merit" for receivers that are in common use.

Sensitivity - The minimum input voltage necessary to produce the specified signal-
                     to-noise ratio S/N( )at the output of the IF section.
Dynamic Range - The ratio of the maximum input signal strength the receiver can
                               handle without significant distortion to the minimum signal strength
                               at which it can meet the S/N requirement
Selectivity - A measure of the ability of a radio receiver to select a particular frequency 
                     or particular band of frequencies and reject all unwanted frequencies
Noise Figure - The ratio of the S/N at the input to the S/N at the output, usually expressed
                         in dB
Image Rejection - The ratio of the response of the RF bandpass filter at the carrier
                               frequency to its response at the image frequency, usually expressed
                               in dB



Receivers for CW Modulation
If the local oscillator in a superheterodyne receiver is replaced by a voltage -
controlled oscillator VCO( ) then the local oscillator frequency can be controlled 
by a voltage and the pre-detection part of the receiver becomes a "voltage-tunable
bandpass amplifier" with center frequency f0 = fLO ± fIF  and bandwidth B = BIF .
If we now drive the VCO with the sawtooth waveform from a ramp generator and drive 
the horizontal deflection of an oscilloscope with the same sawtooth waveform and 
drive the vertical deflection with the output of the detector we have a scanning 
spectrum analyzer.



Receivers for CW Modulation
The ramp generator periodically sweeps the frequency linearly from f1  to f2  in T  
seconds, then quickly jumps back to f1  to begin the next sweep.  At the same time
the oscilloscope horizontal deflection is swept linearly from left to right and then 
quickly back to the beginning point on the left.  To get an accurate picture of the
spectral content of the signal it must be either quasi - periodic or stationary.  Quasi-
periodic means that it seems to be periodic because it repeats a pattern for as long
as we look at the spectral content with the spectrum analyzer.  "Stationary" is a term
applied to random signals meaning that the basic character of the signal does not
change with time although the detailed variation does.



Multiplexing Systems

Multiplexing is the sending of multiple messages over the same
communication channel.  There are three basic types of multiplexing 
systems, frequency-division multiplexing (FDM),  time-division 
multiplexing (TDM) and code-division multiplexing (CDM).



Multiplexing Systems

 

In FDM, multiple signals each modulate a subcarrier.  The subcarriers
are all at different frequencies fc1, fc2 , fcn .  Then the modulated subcarriers 
are summed to produce the baseband signal xb t( ).  The type of modulation
could be any of the types we have explored so far.  Now each signal 
occupies a slot  in the frequency domain.



Multiplexing Systems
In time-division multiplexing (TDM), multiple signals occupy the same
bandwidth but not the same time.  The signals are all sampled at a rate fs
and the samples are interleaved in time.  The sampling rate fs  should be 
greater than twice the bandwidth W  of the signals.  The time between
samples on any single signal is Ts = 1 / fs  and this time interval is called a 
frame.  If there are M  channels, each sampled by pulse-amplitude modulation
(PAM), there are M  pulses in a frame and the interpulse spacing is Ts / M .
The total number of pulses per second in the TDM signal is r = Mfs > 2MW .
r  is called the signaling rate.



Multiplexing Systems

An essential consideration in any TDM system is the synchronization
between the two ends of the channel.  One simple technique is to dedicate
one pulse per frame as a marker.  The marker can be a pulse of a certain 
size or even the lack of a pulse.  The pulses in the TDM information 
signal generally vary quite a bit but the marker pulse always looks the same.
This puts into the TDM pulse stream a periodic component that can be 
detected and locked onto for synchronization.



Multiplexing Systems
The problem of crosstalk that we explored in FDM systems occurs in 
TDM systems also.  In FDM systems crosstalk was caused by overlap
of the bandwidths of the multiplexed signals.  The solution was to put
guard bands between the signal bands to avoid overlap.  In TDM crosstalk 
is caused by overlap of the pulses in time.  The solution is to put guard 
times between pulses.  As a simple introduction to the idea of pulse
overlap, suppose the transmission channel acts like a first-order filter with
-3 dB bandwidth B.  If we apply a rectangular pulse to this filter the 
output pulse is spread out in time.



Multiplexing Systems

 

If we want to insure that the tail of one pulse is no larger than Act  when
the next pulse occurs we need a guard time between pulses of Tg  as 
illustrated below.  The crosstalk reduction factor kct  is defined (in dB) 

by kct  10 log10 Act / A( )2( )  and for a first-order filter with bandwidth B,

kct = 10 log10 Ae−Tg /τ / A( )2( ) = 10 log10 e−4πBTg( ) = 10 log10 10−4πBTg log10 e( )( )
                 kct = 10 −4πBTg log10 e( )⎡⎣ ⎤⎦ = −54.57BTg  dB

So, for example, to keep the crosstalk below -30 dB, 
−30 > −54.5BTg ⇒Tg > 0.5497 / B



Phase and Frequency
Consider a cosine of the form x t( ) = Acos ω0t +φ t( )( ).  The phase of
this cosine is θ t( ) =ω0t +φ t( )  and φ t( )  is its phase shift.  

First consider the case φ t( ) = 0.  
Then x t( ) = Acos ω0t( )  
and θ t( ) =ω0t.  

The radian frequency of this cosine is ω0 .  Also, the first time derivative 
of θ t( )  is ω0 .  So one way of defining radian frequency is as the first 
derivative of phase.  It then follows that phase is the integral of frequency.

t

0T

A
x t( ) = Acos 0t( )

T0 = 1 / f0 = 2 / 0



Phase and Frequency
If x t( ) = Acos ω0t( )  and θ t( ) =ω0t.  Then a graph of phase versus time
would be a straight line through the origin with slope ω0 .

t

0T

A
x t( ) = Acos 0t( )

T0 = 1 / f0 = 2 / 0

t

θ t( )

1

ω 0



Phase and Frequency
Let x t( ) = Acos θ t( )( )  and let θ t( ) =ω0t u t( ) =ω0 ramp t( ).  Then the

frequency is d
dt
θ t( ) =ω0 u t( ).  Call it instantaneous radian frequency 

ω t( ).

t

0T

A

T0 = 1 / f0 = 2 / 0

x t( ) = Acos 0t u t( )( )

t

θ t( )
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ω 0

t
ω 0

ω t( )



Phase and Frequency
Now let x t( ) = Acos 2πt u t( ) + u t −1( )( )( ).  Then the instantaneous 

radian frequency is ω t( ) = 2π u t( ) + u t −1( )⎡⎣ ⎤⎦  and the phase is 

θ t( ) = 2π ramp t( ) + ramp t −1( )( ).

t11 t

ω t( )
θ t( )

π
2π

2π

t

A

t = 1 t = 2

x t( ) = Acos 2 t u t( ) + u t 1( )( )( )



Phase Discrimination
Let x1 t( ) = A1sin ω0t( )  and let x2 t( ) = A2 cos ω0t −φ( ).  
The product is x1 t( )x2 t( ) = A1A2sin ω0t( )cos ω0t −φ( ).
Using a trigonometric identity,

              x1 t( )x2 t( ) = A1A2

2
sin φ( ) + sin 2ω0t −φ( )⎡⎣ ⎤⎦

and

              x1 t( )x2 t( ) = A1A2

2
sin φ( )

LPFA1sin ω 0t( )

A2 cos ω 0t −φ( )

A1A2
2 sin φ( ) + sin 2ω 0t −φ( )⎡⎣ ⎤⎦

A1A2
2 sin φ( )

A1A2 / 2

90°
90°



Voltage-Controlled Oscillators

A voltage - controlled oscillator (VCO) is a device that accepts 
an analog voltage as its input and produces a periodic waveform
whose fundamental frequency depends on that voltage.  Another
common name for a VCO is "voltage-to-frequency converter".  
The waveform is typically either a sinusoid or a rectangular wave.  
A VCO has a free-running frequency fv.  When the input analog
voltage is zero, the fundamental frequency of the VCO output signal
is fv.  The output frequency of the VCO is fVCO = fv + Kv vin where
Kv  is a gain constant with units of Hz/V.



Phase-Locked Loops
A phase - locked loop (PLL) is a device used to generate a periodic
signal with a fixed phase relationship to the carrier in a bandpass signal 
with CW modulation.  An essential ingredient in the locking process is an 
analog phase comparator.  A phase comparator produces a signal that 
depends on the phase difference between two periodic bandpass signals.  
One system that accomplishes this goal is an analog multiplier followed by 
a lowpass filter.  Let the two bandpass signals be xc t( ) = Ac cos θc t( )( )  and 

v t( ) = Av cos θv t( )( )  and let the output signal from the phase comparator 
be y t( ).  Suppose θv t( ) = θc t( )− ε t( ) + 90°. 



Phase-Locked Loops
The product of the two signals is 
xc t( )v t( ) = Ac cos θc t( )( )Av cos θv t( )( )
xc t( )v t( ) = AcAv / 2( ) cos θc t( )−θv t( )( ) + cos θc t( ) +θv t( )( )⎡⎣ ⎤⎦
The output signal from an ideal lowpass filter would be
y t( ) = AcAv / 2( )cos θc t( )−θv t( )( ) = AcAv / 2( )cos ε t( )− 90°( ) = AcAv / 2( )sin ε t( )( )
ε t( )  is the angular error and, when ε t( ) = 0,  y t( ) = 0 and xc t( )  and v t( )  are
in quadrature (because of the 90° term in θv t( )).  For small phase errors ε t( )
the relation between y t( )  and ε t( )  is almost linear.



Phase-Locked Loops

y t( )  depends on both the phase difference and Ac  and Av.  We can make
the dependence on the amplitudes go away if we first hard limit  the signals, 
turning them into fixed-amplitude square waves.  Another benefit of hard-
limiting is that the multiplication becomes a switching operation and the error 
signal y t( )  is now a linear function of ε t( )  over a wider range.



Phase-Locked Loops
To get an understanding of how a PLL locks onto a carrier, let the
phase comparator be analog, as in the diagram below, and let the
incoming bandpass signal be xc t( ) = 2cos θc t( )( )  where 

θc t( ) =ω ct +φ t( ).  Also let v t( ) = cos θv t( )( ).  Then y t( ) = Ka sin ε t( )( ).
The free-running frequency of the VCO is  fv = fc − Δf  and Δf  is the 
frequency error.  The action of the VCO is to produce the angle 

θv t( ) = 2π fc − Δf( )t +φv t( ) + 90° where φv t( ) = 2πKv y λ( )dλt

∫ .  Then

the angular error is 

ε t( ) = θc t( )−θv t( ) + 90° = 2π fct +φ t( )− 2π fc − Δf( )t +φv t( ) + 90°⎡⎣ ⎤⎦ + 90°

                 ε t( ) = θc t( )−θv t( ) + 90° = 2πΔft +φ t( )−φv t( )



Phase-Locked Loops

 

From the previous slide
            ε t( ) = θc t( )−θv t( ) + 90° = 2πΔft +φ t( )− φv t( )

2πKv y λ( )dλ
t

∫


Differentiating with respect to time,
                    ε t( ) = 2πΔf + φ t( )− 2πKv y t( )

Ka sin ε t( )( )


                  ε t( ) + 2πKvKa sin ε t( )( ) = 2πΔf + φ t( )
Let KvKa = K , the loop gain.  Then
                   ε t( ) + 2πK sin ε t( )( ) = 2πΔf + φ t( )
This is a non-linear differential equation and cannot be solved in 
general for an arbitrary φ t( ).  But consider the special case of φ t( ) = φ0 ,

a constant.  Then φ t( ) = 0 and 
ε t( )

2πK
+ sin ε t( )( ) = Δf / K .  When the loop

is locked, ε t( )  is a constant ε ss ,  ε t( ) = 0,  ε ss = sin−1 Δf / K( )  and 

y t( ) = yss = Ka sin sin−1 Δf / K( )( ) = Δf / Kv



Phase-Locked Loops

 

In steady state, y t( ) = yss = Δf / Kv  and vss t( ) = cos ω ct +φ0 − ε ss + 90°( ).
The steady-state angular error ε ss = sin−1 Δf / K( )  will be small if the loop 
gain K  is big.  When Δf / K >1,  the differential equation

                      
ε t( )

2πK
+ sin ε t( )( ) = Δf / K

does not have a steady-state solution because there is no real-valued 
solution of ε ss = sin−1 Δf / K( ).  Therefore a lock-in condition is that
 Δf / K ≤1.  At lock-in when ε ss  is small the differential equation 

becomes 
ε t( )

2πK
+ ε t( ) ≅ Δf / K ,  a linear first-order equation with the

well-known solution form ε t( ) = ε t0( )e−2πK t−t0( )   ,  t ≥ t0 .  So the response
of the PLL to sudden changes in input frequency is to approach steady

state on a time constant of 1
2πK

.



Phase-Locked Loop States
Input and Feedback Signals at Same Frequency



Phase-Locked Loop States
Input and Feedback Signals at Different Frequencies



Phase-Locked Loops
If the phase error of a PLL is small, the PLL can be modeled as a linear
feedback system.  The phase of the VCO output signal is 

φv t( ) = 2πKv y λ( )dλ
t

∫ .  In the complex frequency s( )  domain this 

becomes Φv s( ) = 2πKv Y s( ) / s.



Phase-Locked Loops
E s( ) = Φ s( )− Φv s( )   and  Φv s( ) = E s( )H s( )Ka2πKv / s
Combining equations  E s( ) = Φ s( )− E s( )H s( )Ka2πKv / s
E s( ) + E s( )H s( )Ka2πKv / s = Φ s( )
E s( )
Φ s( ) =

1
1+ H s( )Ka2πKv / s

= s
s + H s( )Ka2πKv

Y s( )
Φ s( ) = Ka H s( ) E s( )

Φ s( ) =
sKa H s( )

s + H s( )Ka2πKv



Phase-Locked Loops

The locations of the poles depend on the nature of the lowpass filter 

transfer function H s( ).  For example, let H s( ) = 1
s + a

.  Then

                  Y s( )
Φ s( ) =

sKa

s + a
s + 2πKaKv

s + a

= sKa

s2 + as + 2πKaKv

The poles are at s =
−a ± a2 − 8πKaKv

2
.  If the real part of every pole is

negative, the system is stable.  For any positive value of a this linearized 
system is absolutely stable, although it could have a large overshoot and 
ringing in response to a step change in input signal phase.



Phase-Locked Loops

                                        Y s( )
Φ s( ) =

sKa H s( )
s + 2πKaKv H s( )

Now, let H s( ) = 1
s2 + a1s + a0

,  a second-order lowpass filter.  Then

                  Y s( )
Φ s( ) =

sKa

s2 + a1s + a0

s + 2πKaKv

s2 + a1s + a0

= sKa

s3 + a1s
2 + a0s + 2πKaKv

The loop transfer function is T s( ) = 2πKaKv

s s2 + a1s + a0( )  with a pole

at s = 0 and two more poles at s =
−a1 ± a1

2 − 4a0

2
 and no finite

zeros.  A root locus would show that this system will become unstable 
at some finite value of 2πKaKv.



Phase-Locked Loops

Example:  Let  fc = 1 MHz, fv = 998 kHz,  Ka = 1 V/V,  Kv = 5000 Hz/V

and H s( ) = 104

s +104 .  Let the PLL be initially locked.  That means that initally

y t( ) = Δf
Kv

= 2000 Hz
5000 Hz/V

= 0.4 V.

Y s( )
Φ s( ) =

sKa H s( )
s + 2πKaKv H s( ) =

s 104

s +104

s + 2π × 5000 104

s +104

= 104 s
s2 +104 s +10π ×107

So the system has poles at s = −5000 ± j17004.6.  It is stable but will have 
appreciable overshoot and ringing in response to a step change in the phase 
of the input signal.



Phase-Locked Loops

Example:  Let  fc = 2 MHz, fv = 2 MHz,  Ka = 1 V/V,  Kv = 1.3 MHz/V

and H s( ) = 0.1775s + 500
s

.  Let the PLL be initially locked.  

That means that initally y t( ) = Δf / Kv = 0.

Y s( )
Φ s( ) =

s 0.1775s + 500
s

s +10000π 0.1775s + 500
s

=
s 0.1775s + 500( )

s2 + 5576s +1.57 ×107

The system has poles at s = −2788 ± j2815.5and should be stable.



Phase-Locked Loops

Example:  
Y s( )
Φ s( ) =

s 0.1775s + 500( )
s2 + 5576s +1.57 ×107

Let the PLL be locked at time t = 0 with φ 0−( ) = 0.  Now let the phase shift

of the incoming signal suddenly change from 0 to 1 radian, φ t( ) = u t( ).  How
does the output voltage y t( )  respond?  Φ s( ) = 1 / s and
Y s( )
1 / s

=
s 0.1775s + 500( )

s2 + 5576s +1.57 ×107

Y s( ) = 0.1775s + 500
s2 + 5576s +1.57 ×107

y t( ) = 0.1775e−2788t cos 2815.5t − 0.0103( )⎡⎣ ⎤⎦u t( )



Phase-Locked Loops

y t( ) = 0.1775e−2788t cos 2815.5t − 0.0103( )⎡⎣ ⎤⎦u t( )



Phase-Locked Loops

 

Example:  Y s( )
Φ s( ) =

s 0.1775s + 500( )
s2 + 5576s +1.57 ×107

Let the PLL be locked at time t = 0 with φ 0−( ) = 0.  Now let the frequency
of the incoming signal suddenly change from 2 MHz to 2.001 MHz.  How
does the output voltage y t( )  respond?  The phase of the incoming signal
was ω ct +φ t( )

=0
 = 4 ×106πt  and now changes to 

4 ×106πt +φ t( ) = 4.002 ×106πt⇒φ t( ) = 2000πt⇒Φ f( ) = 2000π / s2

Y s( )
2000π / s2 =

s 0.1775s + 500( )
s2 + 5576s +1.57 ×107

Y s( ) = 2000π 0.1775s + 500( )
s s2 + 5576s +1.57 ×107( ) =

1115.3s + 3.1416 ×106

s s2 + 5576s +1.57 ×107( )
y t( ) = 0.2 + 0.28149e−2788t cos 2815.5t − 2.362( )⎡⎣ ⎤⎦u t( )



Phase-Locked Loops
y t( ) = 0.2 + 0.28149e−2788t cos 2815.5t − 2.362( )⎡⎣ ⎤⎦u t( )



Phase-Locked Loops
For DSB signals, which do not have transmitted carriers, Costas
invented a system to synchronize a local oscillator and also do
synchronous detection.  The incoming signal is xc t( ) = x t( )cos ω ct( )
with bandwidth 2W .  It is applied to two phase discriminators, main
and quad, each consisting of a multiplier followed by a LPF and an 
amplifier.  The local oscillators that drive them are 90° out of phase so 
that the output signal from the main phase discriminator is x t( )sin ε ss( )
and the output signal from the quad phase discriminator is x t( )cos ε ss( ).



Phase-Locked Loops
The VCO control voltage yss  is the time average of the product of x t( )sin ε ss( )
and x t( )cos ε ss( )  or yss = x2 λ( )cos ε ss( )sin ε ss( )dλ

t−T

t

∫  which is 

yss =
T
2

x2 t( ) sin 0( ) + sin 2ε ss( )⎡⎣ ⎤⎦ = T
2
Sx sin 2ε ss( ).  When the angular error

ε ss  is zero, yss  does not change with time, the loop is locked and the output
signal from the quad phase discriminator is x t( )cos ε ss( ) = x t( )  because ε ss = 0.


