
Random Signals and Noise



  

The distribution function of a random variable X  is the
probability that it is less than or equal to some value,
as a function of that value.
                                 FX x( ) = P X ≤ x⎡⎣ ⎤⎦
Since the distribution function is a probability it must satisfy
the requirements for a probability.
                         0 ≤ FX x( ) ≤1 , − ∞ < x < ∞

                      P x1 < X ≤ x2⎡⎣ ⎤⎦ = FX x2( )− FX x1( )
FX x( )  is a monotonic function and its derivative is never negative.

Distribution Functions



  

The distribution function for tossing a single die

FX x( ) = 1/ 6( ) u x −1( ) + u x − 2( ) + u x − 3( )
+u x − 4( ) + u x − 5( ) + u x − 6( )
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

Distribution Functions



Distribution Functions

A possible distribution function for a continuous random
variable



   

The derivative of the distribution function is the probability 
density function (PDF)

                                pX x( ) ≡ d
dx

FX x( )( )
Probability density can also be defined by
                         pX x( )dx = P x < X ≤ x + dx⎡⎣ ⎤⎦
Properties

          pX x( ) ≥ 0 , − ∞ < x < +∞            pX x( )dx
−∞

∞

∫ = 1

         FX x( ) = pX λ( )dλ
−∞

x

∫         P x1 < X ≤ x2⎡⎣ ⎤⎦ = pX x( )dx
x1

x2

∫

Probability Density



   

Imagine an experiment with M  possible distinct outcomes

performed N  times.  The average of those N  outcomes is X = 1
N

nixi
i=1

M

∑
where xi  is the ith distinct value of X  and ni  is the number of

times that value occurred.  Then X = 1
N

nixi
i=1

M

∑ =
ni

N
xi

i=1

M

∑ = rixi
i=1

M

∑ .

The expected value of X  is

               E X( ) = lim
N→∞

ni

N
xi

i=1

M

∑ = lim
N→∞

rixi
i=1

M

∑ = P X = xi⎡⎣ ⎤⎦ xi
i=1

M

∑ .

Expectation and Moments



  

The probability that X  lies within some small range can be

approximated by P xi −
Δx
2

< X ≤ xi +
Δx
2

⎡

⎣
⎢

⎤

⎦
⎥ ≅ pX xi( )Δx

and the expected value is then approximated by

E X( ) = P xi −
Δx
2

< X ≤ xi +
Δx
2

⎡

⎣
⎢

⎤

⎦
⎥ xi

i=1

M

∑ ≅ xi pX xi( )Δx
i=1

M

∑
where M  is now the number of 
subdivisions of width Δx 
of the range of the random 
variable.

Expectation and Moments



   

In the limit as Δx approaches zero, E X( ) = x pX x( )dx
−∞

∞

∫ .

Similarly E g X( )( ) = g x( )pX x( )dx
−∞

∞

∫ .

The nth moment  of a random variable is E X n( ) = xn pX x( )dx
−∞

∞

∫ .

Expectation and Moments



  

The first moment of a random variable is its expected value

E X( ) = x pX x( )dx
−∞

∞

∫ .  The second moment of a random variable 

is its mean-squared value (which is the mean of its square, not the 
square of its mean).

                                      E X 2( ) = x2 pX x( )dx
−∞

∞

∫

Expectation and Moments



   

A central moment  of a random variable is the moment of
that random variable after its expected value is subtracted.

         E X − E X( )⎡⎣ ⎤⎦
n⎛

⎝
⎞
⎠ = x − E X( )⎡⎣ ⎤⎦

n
pX x( )dx

−∞

∞

∫
The first central moment is always zero.  The second central
moment (for real-valued random variables) is the variance,

        σ X
2 = E X − E X( )⎡⎣ ⎤⎦

2⎛
⎝

⎞
⎠ = x − E X( )⎡⎣ ⎤⎦

2
pX x( )dx

−∞

∞

∫
The positive square root of the variance is the standard
deviation.

Expectation and Moments



  

Properties of Expectation

E a( ) = a , E aX( ) = a E X( ) , E Xn
n
∑⎛⎝⎜

⎞
⎠⎟
= E Xn( )

n
∑

where a is a constant.  These properties can be use to prove

the handy relationship σ X
2 = E X 2( )− E2 X( ).  The variance of 

a random variable is the mean of its square minus the square of 
its mean.

Expectation and Moments



   

Let X  and Y  be two random variables.  Their joint distribution
function is FXY x, y( ) ≡ P X ≤ x∩Y ≤ y⎡⎣ ⎤⎦.

           0 ≤ FXY x, y( ) ≤1 , − ∞ < x < ∞ , − ∞ < y < ∞

             FXY −∞,−∞( ) = FXY x,−∞( ) = FXY −∞, y( ) = 0

                                   FXY ∞,∞( ) = 1

FXY x, y( )  does not decrease if either x or y increases or both increase

               FXY ∞, y( ) = FY y( )  and FXY x,∞( ) = FX x( )

Joint Probability Density



  

                           pXY x, y( ) = ∂ 2

∂x∂ y
FXY x, y( )( )

             pXY x, y( ) ≥ 0 , − ∞ < x < ∞ , − ∞ < y < ∞

   pXY x, y( )dx
−∞

∞

∫ dy
−∞

∞

∫ = 1        FXY x, y( ) = pXY α ,β( )dα
−∞

x

∫ dβ
−∞

y

∫

        pX x( ) = pXY x, y( )dy
−∞

∞

∫   and  pY y( ) = pXY x, y( )dx
−∞

∞

∫

         P x1 < X ≤ x2 , y1 < Y ≤ y2⎡⎣ ⎤⎦ = pXY x, y( )dx
x1

x2

∫ dy
y1

y2

∫

               E g X ,Y( )( ) = g x, y( )pXY x, y( )dx
−∞

∞

∫ dy
−∞

∞

∫

Joint Probability Density



  

If two random variables X  and Y  are independent the expected value of
their product is the product of their expected values.

E XY( ) = xy pXY x, y( )dx
−∞

∞

∫ dy
−∞

∞

∫ = y pY y( )dy x pX x( )dx
−∞

∞

∫
−∞

∞

∫ = E X( )E Y( )

Independent Random Variables



  

Covariance

σ XY ≡ E X − E X( )⎡⎣ ⎤⎦ Y − E Y( )⎡⎣ ⎤⎦
*⎛

⎝
⎞
⎠

σ XY = x − E X( )( ) y* − E Y *( )( )pXY x, y( )dx
−∞

∞

∫ dy
−∞

∞

∫
σ XY = E XY *( )− E X( )E Y *( )

If X  and Y  are independent, σ XY = E X( )E Y *( )− E X( )E Y *( ) = 0

Independent Random Variables



  

Correlation Coefficient

ρXY = E
X − E X( )

σ X

×
Y * − E Y *( )

σY

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

ρXY =
x − E X( )

σ X

⎛

⎝
⎜

⎞

⎠
⎟

y* − E Y *( )
σY

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

pXY x, y( )dx
−∞

∞

∫ dy
−∞

∞

∫

ρXY =
E XY *( )− E X( )E Y *( )

σ XσY

=
σ XY

σ XσY

If X  and Y  are independent ρ = 0.  If they are perfectly positively
correlated ρ = +1 and if they are perfectly negatively correlated 
ρ = −1.

Independent Random Variables



 

If two random variables are independent, their covariance is
zero.  However, if two random variables have a zero covariance
that does not mean they are necessarily independent.

                     Independence ⇒ Zero Covariance

                    Zero Covariance ⇒ Independence

Independent Random Variables



   

In the traditional jargon of random variable analysis, two 
“uncorrelated” random variables have a covariance of zero.

Unfortunately, this does not also imply that their correlation is zero.  
If their correlation is zero they are said to be orthogonal.

                 X  and Y  are "Uncorrelated"⇒σ XY = 0

             X  and Y  are "Uncorrelated"⇒ E XY( ) = 0

Independent Random Variables



  

The variance of a sum of random variables X  and Y  is

σ X +Y
2 = σ X

2 +σY
2 + 2σ XY = σ X

2 +σY
2 + 2ρXYσ XσY

If Z  is a linear combination of random variables Xi

                               Z = a0 + ai Xi
i=1

N

∑

then  E Z( ) = a0 + ai E Xi( )
i=1

N

∑

           σ Z
2 = aia jσ Xi X j

j=1

N

∑
i=1

N

∑ = ai
2σ Xi

2

i=1

N

∑ + aia jσ Xi X j
j=1

N

∑
i=1
i≠ j

N

∑

Independent Random Variables



  

If the X’s are all independent of each other, the variance of
the linear combination is a linear combination of the variances.

                                      σ Z
2 = ai

2σ Xi

2

i=1

N

∑
If Z  is simply the sum of the X’s, and the X’s are all independent
of each other, then the variance of the sum is the sum of the
variances.

                                       σ Z
2 = σ Xi

2

i=1

N

∑

Independent Random Variables



  

Let Z = X +Y .  Then for Z  to be less than z, X  must be less
than z −Y .  Therefore, the distribution function for Z  is

                        FZ z( ) = pXY x, y( )dx
−∞

z− y

∫ dy
−∞

∞

∫

If X  and Y  are independent, FZ z( ) = pY y( ) pX x( )dx
−∞

z− y

∫
⎛

⎝
⎜

⎞

⎠
⎟

−∞

∞

∫ dy

and it can be shown that pZ z( ) = pY y( )pX z − y( )dy
−∞

∞

∫ = pY z( )∗pX z( )  

Probability Density of a Sum
of Random Variables



    

If N  independent random variables are added to form a resultant 

random variable Z = Xn
n=1

N

∑  then

                  pZ z( ) = pX1
z( )∗pX2

z( )∗pX2
z( )∗∗pX N

z( )
and it can be shown that, under very general conditions, the PDF
of a sum of a large number of independent random variables
with continuous PDF’s approaches a limiting shape called the
Gaussian PDF regardless of the shapes of the individual PDF’s.

The Central Limit Theorem



The Central Limit Theorem



  

The Gaussian pdf

                              pX x( ) = 1
σ X 2π

e− x−µX( )2 /2σ X
2

                    µX = E X( )  and σX = E X − E X( )⎡⎣ ⎤⎦
2⎛

⎝
⎞
⎠

The Central Limit Theorem



  

The Gaussian PDF
Its maximum value occurs at the mean value of its argument.
It is symmetrical about the mean value.
The points of maximum absolute slope occur at one standard deviation 
       above and below the mean.
Its maximum value is inversely proportional to its standard deviation.
The limit as the standard deviation approaches zero is a unit impulse.

                     δ x − µx( ) = lim
σ X →0

1
σ X 2π

e− x−µX( )2 /2σ X
2

The Central Limit Theorem



Correlation
The correlation between two signals is a measure of how similarly 
shaped they are.  The definition of correlation R12  for two signals
x1 t( )  and x2 t( ),  at least one of which is an energy signal, is the area 
under the product of x1 t( )  and x2

* t( )  

                               R12 = x1 t( )x2
* t( )dt

−∞

∞

∫ .

If we applied this definition to two power signals, R12  would be infinite.
To avoid that problem, the definition of correlation R12  for two power 
signals x1 t( )  and x2 t( )  is changed to the average of the product of x1 t( )  
and x2

* t( ). 

                               R12 = lim
T→∞

1
T

x1 t( )x2
* t( )dt

−T /2

T /2

∫ .



For two energy signals notice the similarity of correlation to signal energy.

       R12 = x1 t( )x2
* t( )dt

−∞

∞

∫     E1 = x1 t( ) 2 dt
−∞

∞

∫     E2 = x2 t( ) 2 dt
−∞

∞

∫
In the special case in which x1 t( ) = x2 t( ), R12 = E1 = E2.   So for energy
signals, correlation has the same units as signal energy.
For power signals, 

R12 = lim
T→∞

1
T

x1 t( )x2
* t( )dt

−T /2

T /2

∫   P1 = lim
T→∞

1
T

x1 t( ) 2 dt
−T /2

T /2

∫   P2 = lim
T→∞

1
T

x2 t( ) 2 dt
−T /2

T /2

∫
In the special case in which x1 t( ) = x2 t( ), R12 = P1 = P2.   So for power
signals, correlation has the same units as signal power.

Correlation



Consider two energy signals x1 t( )  and x2 t( ).  
If x1 t( ) = x2 t( ), R12 = E1 = E2  
If x1 t( ) = −x2 t( ), R12 = −E1 = −E2

More generally, if x1 t( ) = ax2 t( ),  R12 = E1 / a = aE2 .  
If R12  is positive we say that x1 t( )  and x2 t( )  are positively 
correlated and if R12  is negative we say that x1 t( )  and x2 t( )  
are negatively correlated. 
If R12 = 0, what does that imply?
1.   One possibility is that x1 t( )or x2 t( )  is zero or both are zero.

2.  Otherwise x1 t( )x2
* t( )dt

−∞

∞

∫  must be zero with x1 t( )  and x2 t( )  

     both non-zero.  
In either case, x1 t( )  and x2 t( )  are orthogonal.

Correlation



Consider two energy signals 
               x1 t( ) = x t( ) + y t( )  and x2 t( ) = ax t( ) + z t( )
and let x, y and z all be mutually orthogonal.
What is R12 ?

R12 = x t( ) + y t( )⎡⎣ ⎤⎦ ax t( ) + z t( )⎡⎣ ⎤⎦
* dt

−∞

∞

∫

     = ax t( )x* t( ) + x t( )z* t( ) + ay t( )x* t( ) + y t( )z* t( )⎡⎣ ⎤⎦dt
−∞

∞

∫

      = a x t( )x* t( )dt
−∞

∞

∫ = aR11

Correlation



Positively Correlated 
Random Signals with

Zero Mean

Uncorrelated Random 
Signals with 
Zero Mean

Negatively  Correlated 
Random Signals
with Zero Mean

Correlation



Positively Correlated 
Sinusoids with

Non-Zero Mean

Uncorrelated Sinusoids 
with Non-Zero Mean

Negatively  Correlated 
Sinusoids with 
Non-Zero Mean

Correlation



 

Let v t( )  be a power signal, not necessarily real-valued or periodic, but
with a well-defined average signal power

                      Pv  v t( ) 2 = v t( )v* t( ) ≥ 0

where ⋅  means "time average of" and mathematically means

                          z t( ) = lim
T→∞

1
T

z t( )dt
−T /2

T /2

∫ .

Time averaging has the properties  z* t( ) = z t( ) *   ,  z t − td( ) = z t( )   for 

any td  and a1 z1 t( ) + a2 z2 t( ) = a1 z1 t( ) + a2 z2 t( ) .  If v t( )  and w t( )  are 

power signals, v t( )w* t( )  is the scalar product  of v t( )  and w t( ).  The 
scalar product is a measure of the similarity between two signals.

Correlation



Let z t( ) = v t( )− aw t( )  with a real.  Then the average power of 
z t( )  is 

   Pz = z t( )z* t( ) = v t( )− aw t( )⎡⎣ ⎤⎦ v* t( )− a*w* t( )⎡⎣ ⎤⎦ .

Expanding,

Pz = v t( )v* t( )− aw t( )v* t( )− v t( )a*w* t( ) + a2 w t( )w* t( )
Using the fact that aw t( )v* t( )  and v t( )a*w* t( )  are complex 
conjugates, and that the sum of a complex number and its complex
conjugate is twice the real part of either one,

             Pz = Pv + a
2Pw − 2aRe v t( )w* t( )⎡⎣ ⎤⎦ = Pv + a

2Pw − 2aRvw

Correlation



                               Pz = Pv + a
2Pw − 2aRvw

Now find the value of a that minimizes Pz  by differentiating with
respect to a and setting the derivative equal to zero.

                  ∂
∂a
Pz = 2aPw − 2Rvw = 0 ⇒ a = Rvw

Pw
Therefore, to make v and aw as similar as possible (minimizing z)
set a to the correlation of v and w divided by the signal power of w.
If v t( )  = w t( ),  a = 1.  If v t( ) = −w t( )  then a = −1.
If Rvw = 0,  Pz = Pv + a

2Pw.

Correlation



The correlation between two energy signals x and y is the area under 
the product of x and y*.  

                                     Rxy  = x t( )y* t( )dt
−∞

∞

∫
The correlation function between two energy signals x and y is the 
area under the product as a function of how much y is shifted relative 
to x.

                  Rxy τ( ) = x t( )y* t −τ( )dt
−∞

∞

∫ = x t + τ( )y* t( )dt
−∞

∞

∫
In the very common case in which x and y are both real-valued,

                     Rxy τ( ) = x t( )y t −τ( )dt
−∞

∞

∫ = x t + τ( )y t( )dt
−∞

∞

∫

Correlation



 

The correlation function for two real-valued energy signals is very 
similar to the convolution of two real-valued energy signals.

        x t( )∗y t( ) = x t − λ( )y λ( )dλ
−∞

∞

∫ = x λ( )y t − λ( )dλ
−∞

∞

∫
Therefore it is possible to use convolution to find the correlation 
function.  

Rxy τ( ) = x λ( )y λ −τ( )dλ
−∞

∞

∫ = x λ( )y − τ − λ( )( )dλ
−∞

∞

∫ = x τ( )∗y −τ( )

(λ  is used here as the variable of integration instead of t  or τ  to avoid 
confusion among different meanings for t  and τ  in correlation and 
convolution formulas.)  It also follows that
                              Rxy τ( ) F← →⎯ X f( )Y* f( )

Correlation



The correlation function between two power signals x and y is the 
average value of the product of x and y* as a function of how much y* 
is shifted relative to x.

                               Rxy τ( ) = lim
T→∞

1
T

x t( )y* t −τ( )dt
T∫

If the two signals are both periodic and their fundamental periods have 
a finite least common period, where T  is any integer multiple of that 
least common period.  

                                 Rxy τ( ) = 1
T

x t( )y* t −τ( )dt
T∫

For real-valued periodic signals this becomes

                                 Rxy τ( ) = 1
T

x t( )y t −τ( )dt
T∫

Correlation



  

Correlation of real periodic signals is very similar to periodic convolution

                                     Rxy τ( ) = x τ( )y −τ( )
T

where it is understood that the period of the periodic convolution is any 
integer multiple of the least common period of the two fundamental 
periods of x and y.
                                    Rxy τ( ) FS

T← →⎯⎯ cx k[ ]cy
* k[ ]

Correlation



Correlation

 

Find the correlation of x t( ) = Acos 2π f0t( )  with y t( ) = Bsin 2π f0t( ).

R12 τ( ) = lim
T→∞

1
T

x1 t( )x2 t −τ( )dt
−T /2

T /2

∫ = lim
T→∞

AB
T

cos 2π f0t( )sin 2π f0 t −τ( )( )dt
−T /2

T /2

∫

R12 τ( ) = lim
T→∞

AB
2T

sin 2π f0 −τ( )( ) + sin 4π f0t −τ( )⎡⎣ ⎤⎦dt
−T /2

T /2

∫

R12 τ( ) = lim
T→∞

− AB
2T

sin 2π f0τ( )dt
−T /2

T /2

∫ = lim
T→∞

− AB
2T

t sin 2π f0τ( )⎡⎣ ⎤⎦−T /2

T /2
= − AB

2
sin 2π f0τ( )

OR
R12 τ( ) FS

T0
← →⎯⎯ cx k[ ]cy

* k[ ] = A / 2( ) δ k −1[ ]+δ k +1[ ]( ) − jB / 2( ) δ k +1[ ]−δ k −1[ ]( )
R12 τ( ) FS

T0
← →⎯⎯ − jAB / 4( ) δ k +1[ ]−δ k −1[ ]( )

R12 τ( ) = − AB
2

sin 2π f0τ( ) FS

T0
← →⎯⎯ − jAB / 4( ) δ k +1[ ]−δ k −1[ ]( )



Correlation



Correlation

Find the correlation function between these two functions.

x1 t( ) = 4  ,  0 < t < 4
0  ,  otherwise

⎧
⎨
⎩

    ,    x2 t( ) =
−3  ,  − 2 < t < 0
3     ,  0 < t < 2
0    ,  otherwise

⎧
⎨
⎪

⎩⎪

R12 τ( ) = x1 t( )x2 t −τ( )dt
−∞

∞

∫
For τ < −2,  x1 t( )x2 t −τ( ) = 0 and R12 τ( ) = 0.

For − 2 < τ < 0, x1 t( )x2 t −τ( ) = 4 × 3  ,  0 < t < 2 + τ
0        ,  otherwise

⎧
⎨
⎩

⎫
⎬
⎭
⇒ R12 τ( ) = 12 2 + τ( )

For 0 < τ < 2  ,  x1 t( )x2 t −τ( ) =
4 × −3( )   ,  0 < t < τ
4 × 3  ,  τ < t < 2 + τ
0        ,  otherwise

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪
⇒ R12 τ( ) = −12τ + 24 = 12 2 −τ( )



Correlation

For 2 < τ < 4  ,  x1 t( )x2 t −τ( ) =
4 × −3( )   ,  τ − 2 < t < τ
4 × 3       ,  τ < t < 4
0             ,  otherwise

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪
⇒ R12 τ( ) = 12 2 −τ( )

For 4 < τ < 6  ,  x1 t( )x2 t −τ( ) = 4 × −3( )   ,  τ − 2 < t < 4
0              ,  otherwise

⎧
⎨
⎩

⎫
⎬
⎭
⇒ R12 τ( ) = −12 6 −τ( )

For τ > 6,  x1 t( )x2 t −τ( ) = 0 and R12 τ( ) = 0.

                                     
τ −2 −1 0 1 2 3 4 5 6

R12 τ( ) 0 12 24 12 0 −12 −24 −12 0



Correlation
Find the correlation function between these two functions.

x1 t( ) = 4  ,  0 < t < 4
0  ,  otherwise

⎧
⎨
⎩

    ,    x2 t( ) =
−3  ,  − 2 < t < 0
3     ,  0 < t < 2
0    ,  otherwise

⎧
⎨
⎪

⎩⎪

Alternate Solution:

x1 t( ) = 4 rect t − 2
4

⎛
⎝⎜

⎞
⎠⎟     ,    x2 t( ) = 3 − rect t +1

2
⎛
⎝⎜

⎞
⎠⎟ + rect t −1

2
⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

  ,  x2 −t( ) = 3 rect t +1
2

⎛
⎝⎜

⎞
⎠⎟ − rect t −1

2
⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

Using rect t / a( )∗ rect t / b( ) = a + b
2

tri 2t
a + b

⎛
⎝⎜

⎞
⎠⎟
−
a − b

2
tri 2t

a − b
⎛

⎝⎜
⎞

⎠⎟

R12 τ( ) = x1 τ( )∗x2 −τ( ) = 12 3tri τ −1
3

⎛
⎝⎜

⎞
⎠⎟ − tri τ −1( )− 3tri τ − 3

3
⎛
⎝⎜

⎞
⎠⎟ + tri τ − 3( )⎡

⎣⎢
⎤
⎦⎥

Checking some values of τ :

                                     
τ −2 −1 0 1 2 3 4 5 6

R12 τ( ) 0 12 24 12 0 −12 −24 −12 0

These answers are the same as in the previous solution.



A very important special case of correlation is autocorrelation.  
Autocorrelation is the correlation of a function with a shifted 
version of itself.  For energy signals,

                         Rx τ( ) = Rx x τ( ) = x t( )x* t −τ( )dt
−∞

∞

∫
At a shift τ  of zero,

                      Rx 0( ) = x t( )x* t( )dt
−∞

∞

∫ = x t( ) 2 dt
−∞

∞

∫ = Ex

which is the signal energy of the signal.

Autocorrelation



For power signals autocorrelation is

                      Rx τ( ) = lim
T→∞

1
T

x t( )x* t −τ( )dt
T∫

At a shift τ  of zero,

                          Rx 0( ) = lim
T→∞

1
T

x t( ) 2 dt
T∫

which is the average signal power of the signal.

Autocorrelation



For real signals, autocorrelation is an even function.
                               Rx τ( ) = Rx −τ( )
Autocorrelation magnitude can never be larger than it is at zero shift.
                               Rx 0( ) ≥ Rx τ( )
If a signal is time shifted its autocorrelation does not change.
The autocorrelation of a sum of sinusoids of different frequencies is the 
sum of the autocorrelations of the individual sinusoids.

Autocorrelation



Autocorrelations for a cosine “burst” and a sine “burst”.  
Notice that they are almost (but not quite) identical.

Autocorrelation



Autocorrelation



Autocorrelation



Different Signals Can Have the Same Autocorrelation

Autocorrelation



Different Signals Can Have the Same Autocorrelation

Autocorrelation



Parseval's theorem says that the total signal energy in an energy signal is

                      Ex = x t( ) 2 dt
−∞

∞

∫ = X f( ) 2 df
−∞

∞

∫
The quantity X f( ) 2  is called the energy spectral density (ESD)  
of the signal x and is conventionally given the symbol Ψx f( )  (Gx f( )  in
the book).  That is,

                         Ψx f( ) = X f( ) 2 = X f( )X* f( )
It can be shown that if x is a real-valued signal that the ESD is even, 
non-negative and real.  In the term "spectral density", "spectral" refers
to variation over a "spectrum" of frequencies and "density" refers to
the fact that, since the integral if Ψx f( )  yields signal energy, Ψx f( )
must be signal energy density in signal energy/Hz.

Energy Spectral Density



 

It can be shown that, for an energy signal, ESD and autocorrelation 
form a Fourier transform pair.

                                  Rx t( ) F← →⎯ Ψx f( )

The signal energy of a signal is the area under the energy spectral density
and is also the value of the autocorrelation at zero shift.

                               Ex = Rx 0( ) = Ψx f( )df
−∞

∞

∫

Energy Spectral Density



Probably the most important fact about ESD is the relationship 
between the ESD of the excitation of an LTI system and the 
ESD of the response of the system.  It can be shown that they 
are related by

             Ψy f( ) = H f( ) 2 Ψx f( ) = H f( )H* f( )Ψx f( )

Energy Spectral Density



Energy Spectral Density



Energy Spectral Density

Find the energy spectral density of x t( ) = 10 rect t − 3
4

⎛
⎝⎜

⎞
⎠⎟ .

Using Ψx f( ) = X f( ) 2 = X f( )X* f( ),
                            X f( ) = 40sinc 4 f( )e− j6π f
      X f( )X* f( ) = 40sinc 4 f( )e− j6π f × 40sinc 4 f( )e j6π f
                       X f( )X* f( ) = 1600sinc2 4 f( )



 

Power spectral density (PSD) applies to power signals in the same way 
that energy spectral density applies to energy signals.  The PSD of a 
signal x is conventionally indicated by the notation Gx f( )  whose units
are signal power/Hz.  In an LTI system,

                 Gy f( ) = H f( ) 2 Gx f( ) = H f( )H* f( )Gx f( )

Also, for a power signal, PSD and autocorrelation form a Fourier 
transform pair.
                                          R t( ) F← →⎯ G f( )

Power Spectral Density



PSD Concept



Typical 
Signals in 

PSD Concept



Power Spectral Density

 

Find the power spectral density of x t( ) = 30sin 200πt( )cos 200000πt( ).
Using R t( ) F← →⎯ G f( )  and Rxy τ( ) FS

T← →⎯⎯ cx k[ ]cy
* k[ ]

Rx τ( ) FS

T← →⎯⎯ cx k[ ]cx
* k[ ]

Using T = T0 = 0.01 s, 
cx k[ ] = 30 j / 2( ) δ k +1[ ]−δ k −1[ ]( )∗ 1 / 2( ) δ k −1000[ ]+δ k +1000[ ]( )
cx k[ ] = j 15

2
δ k − 999[ ]+δ k +1001[ ]−δ k −1001[ ]−δ k + 999[ ]( )

cx k[ ]cx
* k[ ] = 15

2
⎛
⎝⎜

⎞
⎠⎟

2

δ k − 999[ ]+δ k +1001[ ]+δ k −1001[ ]+δ k + 999[ ]( )

Rx τ( ) = 152

2
cos 199800πτ( ) + cos 200200πτ( )⎡⎣ ⎤⎦

G f( ) = 152

4
δ f − 99900( ) +δ f + 9900( ) +δ f −100100( ) +δ f +100100( )⎡⎣ ⎤⎦



Random Processes
A random process maps experimental outcomes into real functions
of time.  The collection of time functions is known as an ensemble and
each member of the ensemble is called a sample function.  The ensemble
will be represented by the notation v t, s( )  in which t  is time and s is 
the sample function.



Random Processes

 

To simplify notation, let v t, s( )  become just v t( )  where it will be
understood from context that v t( )  is a sample function from a random
process.  The mean value of v t( )  at any arbitrary time t  is E v t( )( ).
This is an ensemble mean,  not a time average.  It is the average of

all the sample function values at time t,  E v t1( )( ) =V1.  Autocorrelation

is defined by Rv t1,t2( )  E v t1( )v t2( )( ).  If V1  and V2  are statistically

independent then Rv t1,t2( ) =V1V2 .  If t1 = t2 , then V1 =V2  and 

Rv t1,t2( ) =V1
2 and, in general, Rv t,t( ) = E v2 t( )( ) = v2 t( ),  the mean-

squared value of v t( )  as a function of time.



Random Processes

 

A generalization of autocorrelation to the relation between two
different random processes is cross - correlation defined by

Rvw t1,t2( )  E v t1( )w t2( )( ).  The covariance function is defined by 

           Cvw t1,t2( )  E v t1( )− E v t1( )( )⎡⎣ ⎤⎦ w t1( )− E w t1( )( )⎡⎣ ⎤⎦( ).
If, for all t1  and t2 , Rvw t1,t2( ) = v t1( )× w t2( ) then v and w are said to

be uncorrelated and Cvw t1,t2( ) = 0.  So zero covariance implies that
two processes are uncorrelated but not necessarily independent.  
Independent random processes are uncorrelated but uncorrelated
random processes are not necessarily independent.  If, for all t1  and t2 , 
Rvw t1,t2( ) = 0, the two random processes are said to be orthogonal.



Random Processes
A random process is ergodic if all time averages of sample functions
are equal to the corresponding ensemble averages.  If g vi t( )( )  is any
function of vi t( ), then its time average is 

                       g vi t( )( ) = lim
T→∞

1
T

g vi t( )( )dt
−T /2

T /2

∫
So, for an ergodic process, g vi t( )( ) = E g v t( )( )( ).  By definition 

g vi t( )( )  is independent of time because it is an average over all time.
It then follows that ensemble averages of ergodic processes are 
independent of time.  If a random process v t( )  is ergodic then 

E v t( )( ) = v = mv  and E v2 t( )( ) = v2 = σ v
2 + mv

2  where m and σ v
2  are

the mean and variance of v t( ).



Random Processes
For an ergodic random process representing an electrical signal we can
identify some common terms as follows:
Mean value mv  is the "DC" component vi t( ) .

The square of the mean mv
2  is the "DC" power vi t( ) 2 (the power in the 

        average).

The mean-squared value v2  is the total average power vi
2 t( ) .

The variance σ v
2  is the "AC" power (the power in the time-varying part).

The standard deviation σ v  is the RMS value of the time-varying part.
Be sure not to make the common mistake of confusing "the square of
the mean" with "the mean-squared value", which means "the mean of
the square".  In general the square of the mean and the mean of the
square are different.

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟



Random Processes
Actually proving that a random process is ergodic is usually very 
difficult, if not impossible.  A much more common and useful 
requirement on a random process that is much easier to prove is that
it be wide - sense stationary WSS( ).  A random process is wide-sense
stationary when the mean E v t( )( )  is independent of time and the 

autocorrelation function Rv t1,t2( )  depends only on the time difference 

t1 − t2 .  So wide-sense stationarity requires E v t( )( ) = mv  and

Rv t1,t2( ) = Rv t1 − t2( )  and we usually write autocorrelation functions
with the notation Rv τ( )  in which τ = t1 − t2 .  So 
                    Rv τ( ) = E v t( )v t −τ( )( ) = E v t + τ( )v t( )( )
and Rv τ( )  has the properties Rv τ( ) = Rv −τ( ),  Rv 0( ) = v2 = mv

2 +σ v
2

and Rv τ( ) ≤ Rv 0( ).



Random Processes

 

Rv τ( )  indicates the similarity of v t( )  and v t ± τ( ).  If v t( )  and v t ± τ( )
are independent of each other as τ → ∞, then lim

τ→±∞
Rv τ( ) = v2 = mv

2 .  If 

the sample functions of v t( )  are periodic, then v t( )  and v t ± τ( )  do not
become independent as τ → ∞ and Rv τ ± nT0( ) = Rv τ( ), n an integer.
The average power of a random process v t( )  is the ensemble average of

v2 t( ) ,  P  E v2 t( )( ) = E v2 t( )( ) .  If the random process is stationary

P = Rv 0( ).



Random Processes

A very important special case of a random process is the gaussian random
process.  A random process is gaussian if all its marginal, joint and 
conditional probability density functions (pdf's) are gaussian.  Gaussian
processes are important because they occur so frequently in nature.  If a 
random process v t( )  is gaussian the following properties apply:
1.  The process is completely characterized by E v t( )( )  and Rv t1,t2( ).
2.  If Rv t1,t2( ) = E v t1( )( )E v t2( )( )  then v t1( )  and v t2( )  are uncorrelated and
     statistically independent.
3.  If v t( )  is wide-sense stationary it is also strictly stationary and ergodic.
4.  Any linear operation on v t( )  produces another gaussian process.



Random Signals

 

If a random signal v t( )  is stationary then its power spectrum Gv f( ) is 
defined as the distribution of its power over the frequency domain.  The
power spectrum (also known as the "power spectral density" (PSD)) is the
Fourier transform of the autocorrelation function, Rv τ( ) F← →⎯ Gv f( ).
Gv f( )  has the properties:

  Gv f( )df
−∞

∞

∫ = Rv 0( ) = v2 = P  ,  Gv f( ) ≥ 0  ,  Gv f( ) = Gv − f( )



Random Signals

 

If two random signals v t( )  and w t( )  are jointly stationary such that 
Rvw t1,t2( ) = Rvw t1 − t2( )  and if z t( ) = v t( ) ± w t( ),  then 

                Rz τ( ) = Rv τ( ) + Rw τ( ) ± Rvw τ( ) + Rwv τ( )⎡⎣ ⎤⎦
and
                Gz f( ) = Gv f( ) +Gw f( ) ± Gvw f( ) +Gwv f( )⎡⎣ ⎤⎦
where Rvw τ( ) F← →⎯ Gvw f( )  and Gvw f( )  is cross - spectral density
(also known as "cross power spectral density (CPSD)").  If v t( )   and w t( )
are uncorrelated and mvmw = 0,  then Rvw τ( ) = Rwv τ( ) = 0,  

Rz τ( ) = Rv τ( ) + Rw τ( ),  Gz f( ) = Gv f( ) +Gw f( )  and z2 = v2 + w2.



Random Signals

 

Let z t( ) = v t( )cos ω ct +Φ( )  in which v t( )  is a stationary random signal
and Φ is a random angle independent of v t( )  and uniformly distributed
over the range −π ≤ Φ ≤ π .  Then 

Rz t1,t2( ) = E z t1( )z t2( )( ) = E v t1( )cos ω ct1 +Φ( )v t2( )cos ω ct2 +Φ( )( )
Rz t1,t2( ) = E v t1( )v t2( ) 1 / 2( ) cos ω c t1 − t2( )( ) + cos ω c t1 + t2( ) + 2Φ( )⎡⎣ ⎤⎦( )
          Rz t1,t2( ) = 1 / 2( )

E v t1( )v t2( )cos ω c t1 − t2( )( )( )
+E v t1( )v t2( )cos ω c t1 + t2( ) + 2Φ( )( )
⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

          Rz t1,t2( ) = 1 / 2( )
E v t1( )v t2( )( )cos ω c t1 − t2( )( )
+E v t1( )v t2( )( )E cos ω c t1 + t2( ) + 2Φ( )( )

=0
  

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

          Rz t1,t2( ) = 1 / 2( )E v t1( )v t2( )( )cos ω c t1 − t2( )( )



Random Signals

In Rz t1,t2( ) = 1 / 2( )E v t1( )v t2( )( )cos ω c t1 − t2( )( )  since 

Rv t1,t2( ) = Rv τ( )  we can say that Rz τ( ) = 1 / 2( )Rv τ( )cos ω cτ( ).
Then Gz f( ) = 1 / 2( )Gv f( )∗ 1 / 2( ) δ f − fc( ) +δ f + fc( )⎡⎣ ⎤⎦
         Gz f( ) = 1 / 4( ) Gv f − fc( ) +Gv f + fc( )⎡⎣ ⎤⎦.

In general, if v t( )  and w t( )  are independent and jointly stationary
and z t( ) = v t( )w t( ),  then 
           Rz τ( ) = Rv τ( )Rw τ( )  and Gz f( ) = Gv f( )∗Gw f( )



Random Signals

When a random signal x t( )  excites a linear system with impulse response
h t( )  the response is another random signal

                         y t( ) = x t( )∗h t( ) = x τ( )h t −τ( )dτ
−∞

∞

∫ .

So if we have a mathematical description of x t( )  we can find y t( ).  But,
of course, if x t( )  is random we do not have a mathematical description of
it and cannot do the convolution integral.  So we cannot describe y t( )  
exactly because we do not have an exact description of x t( ).   But we can
describe y t( )  statistically in the same way we describe x t( ),  through its
mean value and autocorrelation.



Random Signals

When a random signal x t( )  excites a linear system with impulse response h t( )  

1.  The mean value of the response y t( )  is  my = mx h λ( )dλ
−∞

∞

∫ = H 0( )mx

     where H f( )  is the frequency response of the system, 
2.  The autocorrelation of the response is Ry τ( ) = h −τ( )∗h τ( )∗Rx τ( ),  and
3.  The power spectrum of the response is 

                    Gy f( ) = H f( ) 2 Gx f( ) = H f( )H* f( )Gx f( )



Random Signals

Every signal in every system has noise on it and may also have interference.
Noise is a random signal occurring naturally and interference is a non-random 
signal produced by another system.  In some cases the noise is small enough 
to be negligible and we need not do any formal analysis of it, but it is never 
zero.  In communication systems the relative powers of the desired signal and 
the undesirable noise or interference are always important and the noise is often 
not negligible in comparison with the signal.  The most important naturally
occurring random noise is thermal noise (also called Johnson noise).  Thermal 
noise arises from the random motion of electrons in any conducting medium.



Random Signals

 

A resistor of resistance R ohms at an absolute temperature of T  kelvins
produces a random gaussian noise at its terminals with zero mean and variance

v2 = σ v
2 =

2 πkT( )2

3h
R   V2  where k  is Boltzmann's constant 1.38 ×10−23  J/K

and h is Planck's constant 6.62 ×10−34  J ⋅s.  The power spectrum of this voltage

is Gv f( ) = 2Rh f
eh f /kT −1

  V2 / Hz.  To get some idea of how this power spectrum

varies with frequency let T = 290 K (near room temperature).  Then
kT = 4 ×10−21  J and h f / kT = f / 6.0423×1012.  So at frequencies below

about 1 THz, h f / kT <<1 and eh f /kT ≅ 1+ h f / kT .  Then

Gv f( ) = 2Rh f
h f / kT

≅ 2kTR  V2 / Hz and the power spectrum is approximately

constant.



Random Signals

 

In analysis of noise effects due to the thermal noise of resistors we can
model a resistor by a Thevenin equivalent, the series combination of a 
noiseless resistor of the same resistance and a noise voltage source whose 
power spectrum is Gv f( ) = 2kTR  V2 / Hz.  Alternately we could also use a 
Norton equivalent of a noiseless resistor of the same resistance in parallel

with a noise current source whose power spectrum is Gi f( ) = 2kT
R

  A2 / Hz.



Random Signals
We have seen that at frequencies below about 1 THz the power spectrum of
thermal noise is essentially constant.  Noise whose power spectrum is constant
over all frequencies is called white noise.  (The name comes from optics in
which light having a constant spectral density over the visible range appears
white to the human eye.)  We will designate the power spectrum of white
noise as G f( ) = N0 / 2 where N0  is a density constant.  (The factor of 1/2
is there to account for half the power in positive frequencies and half in
negative frequencies.)  If the power spectrum is constant, the autocorrelation

must be R τ( ) = N0

2
δ τ( ), an impulse at zero time shift.  This indicates that

white noise is completely uncorrelated with itself at any non-zero shift.
In analysis of communication systems we normally treat thermal noise as
white noise because its power spectrum is virtually flat over a very wide
frequency range.



Random Signals

 

Some random noise sources have a power spectrum that is white and
unrelated to temperature.  But we often assign them a noise temperature
anyway and analyze them as though they were thermal.  This is convenient
for comparing white random noise sources.  The noise temperature of a 

non-thermal random noise source is TN =
2Ga f( )

k
= N0

k
.   Then, if we know 

a random noise source's noise temperature its density constant is N0 = kTN .



As a signal propagates from its source to its destination, random noise 
sources inject noise into the signal at various points.  In analysis of noise 
effects we usually lump all the noise effects into one injection of noise 
at the input to the receiver that yields equivalent results.  As a practical 
matter the input of the receiver is usually the most vulnerable point 
for noise injection because the received signal is weakest at this point.  

Baseband Signal Transmission with Noise



 

In analysis we make two reasonable assumptions about the additive noise, it 
comes from an ergodic source with zero mean and it is physically independent 
of the signal, therefore uncorrelated with it.  Then, the average of the product 
xD t( )nD t( )  is the product of their averages and, since the average value of nD t( )  

is zero, the product is zero.  Also yD
2 t( ) = xD

2 t( ) + nD
2 t( ).  Define SD  xD

2  and

ND  nD
2 .  Then yD

2 t( ) = SD + ND .  There is probably nothing in communication
design and analysis more important than signal-to-noise ratio (SNR).  It is 

defined as the ratio of signal power to noise power S / N( )D  SD / ND = xD
2 / nD

2 .

Baseband Signal Transmission with Noise



Baseband Signal Transmission with Noise

 

In analysis of baseband transmission systems we take Gn f( ) = N0 / 2.
Then the destination noise power is ND = gRN0B where gR  is the power
gain of the receiver amplifier and B is the noise bandwidth of the receiver.
N0 = kTN = kT0 TN / T0( ) = 4 ×10−21 TN / T0( )   W/Hz  where it is
understood that T0 = 290 K.  The transmitted signal power is ST = gTSx  
where gT  is the power gain of the transmitter.  The received signal power
is SR = ST / L  where L  is the loss of the channel. The signal power at the
destination is SD = gRSR . 



Baseband Signal Transmission with Noise

 

The signal-to-noise ratio at the destination is 

                 SD / ND = S / N( )D = gRSR
gRN0W

= SR
N0W

or, in dB,

S / N( )DdB
= 10 log10

SR
kTNW

⎛
⎝⎜

⎞
⎠⎟
= 10 log10

SR
kT0W

× T0

TN

⎛
⎝⎜

⎞
⎠⎟

               = 10 log10 SR( )−10 log10 kT0( )−10 log10
TN

T0

W
⎛
⎝⎜

⎞
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Expressing everything in dBm,

S / N( )DdB
= SRdBm

+ 174 −10 log10
TN

T0

W
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

dBm


