The z Transform
Relation to the Laplace Transform

- The z transform is to DT signals and systems what the Laplace transform is to CT signals and systems
Definition

The z transform can be viewed as a generalization of the DTFT or as a natural result of exciting a discrete-time LTI system with its eigenfunction. The DTFT is defined by

$$x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(j\Omega)e^{j\Omega n} d\Omega \leftarrow \mathcal{F} \rightarrow X(j\Omega) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\Omega n}$$

If a strict analogy with the Laplace transform were made Ω would replace ω, Σ would replace σ, S would replace s, a summation would replace the integral and the z transform would be defined by

$$X(S) = \sum_{n=-\infty}^{\infty} x[n]e^{-Sn} = \sum_{n=-\infty}^{\infty} x[n]e^{-(\Sigma+j\Omega)n} = \sum_{n=-\infty}^{\infty} (x[n]e^{-n\Sigma})e^{-j\Omega n}$$
Definition

\[X(S) = \sum_{n=-\infty}^{\infty} x[n]e^{-Sn} = \sum_{n=-\infty}^{\infty} x[n]e^{-(\Sigma+j\Omega)n} = \sum_{n=-\infty}^{\infty} \left(x[n]e^{-n\Sigma}\right)e^{-j\Omega n} \]

Viewed this way the factor, \(e^{-n\Sigma} \), would be a “convergence” factor in that same way that the factor, \(e^{-\sigma t} \), was for the Laplace transform.

The other approach to defining the \(z \) transform is to excite a DT system with its eigenfunction, \(Az^n \). The response would be

\[y[n] = x[n]*h[n] = Az^n*h[n] = \sum_{m=-\infty}^{\infty} h[m]Az^{(n-m)} = Az^n \sum_{m=-\infty}^{\infty} h[m]z^{-m} \]

\(z \) transform of \(h[n] \)
Definition

The universally accepted definition of the z transform of a DT function, x, is

\[X(z) = \sum_{n=-\infty}^{\infty} x[n]z^{-n} \]

and x and X form a “z-transform pair”,

\[x[n] \xrightarrow{z} X(z) \]
Convergence

The DTFT’s of some common functions do not, in the strict sense, converge. The DTFT of the unit sequence would be

\[X(j\Omega) = \sum_{n=-\infty}^{\infty} u[n]e^{-j\Omega n} = \sum_{n=0}^{\infty} e^{-j\Omega n} \]

which does not converge. But the \(z \) transform of the unit sequence does exist. It is

\[X(z) = \sum_{n=-\infty}^{\infty} u[n]z^{-n} = \sum_{n=0}^{\infty} z^{-n} \]

and the \(z \) transform exists for values of \(z \) whose magnitudes are greater than one. This defines a region of convergence (ROC) for the \(z \) transform of the unit sequence, the exterior of the unit circle in the \(z \) plane.
Convergence

The series, $\sum_{n=0}^{\infty} z^{-n}$, is a geometric series. The general formula for the summation of a finite geometric series is

$$\sum_{n=0}^{N-1} r^n = \begin{cases} 1, & r = 1 \\ \frac{1 - r^N}{1 - r}, & r \neq 1 \end{cases}$$

This formula also applies to the infinite series above if the magnitude of z is greater than one. In that case the z transform of the unit sequence is

$$X(z) = \frac{z}{z-1} = \frac{1}{1-z^{-1}}, \quad |z| > 1$$
Transfer Functions

If \(x \) is the excitation, \(h \) is the impulse response and \(y \) is the system response of a discrete-time LTI system, then

\[
Y(z) = X(z)H(z)
\]

and \(H \) is called the \textit{transfer function} of the system. This is directly analogous to previous transfer functions,

\[
Y(j\omega) = X(j\omega)H(j\omega)
\]

\[
Y(j\Omega) = X(j\Omega)H(j\Omega)
\]

\[
Y(s) = X(s)H(s)
\]
Region of Convergence

Taking a path analogous to that used the development of the Laplace transform, the z transform of the causal DT signal

\[A\alpha^n u[n], \, |\alpha| > 0 \]

is

\[X(z) = A \sum_{n=-\infty}^{\infty} \alpha^n u[n]z^{-n} = A \sum_{n=0}^{\infty} \alpha^n z^{-n} = A \sum_{n=0}^{\infty} \left(\frac{\alpha}{z} \right)^n \]

and the series converges if $|z| > |\alpha|$. This defines the region of convergence as the exterior of a circle in the z plane centered at the origin, of radius, $|\alpha|$. The z transform is

\[X(z) = A \frac{z}{z - \alpha}, \, |z| > |\alpha| \]
Region of Convergence

By similar reasoning, the z transform and region of convergence of the anti-causal signal, $A\alpha^{-n}u[-n]$, $|\alpha| > 0$ are

$$X(z) = \frac{A}{1 - \alpha z} = \frac{A z^{-1}}{z^{-1} - \alpha} , \quad |z| < \frac{1}{|\alpha|}$$
The Unilateral z Transform

Just as it was convenient to define a unilateral Laplace transform it is convenient for analogous reasons to define a unilateral z transform

$$X(z) = \sum_{n=0}^{\infty} x[n]z^{-n}$$

which will simply be referred to as *the* z transform from this point on.
Properties

If two causal DT signals form these transform pairs,

\[g[n] \xrightarrow{z} G(z) \quad \text{and} \quad h[n] \xrightarrow{z} H(z) \]

then the following properties hold for the \(z \) transform.

Linearity

\[\alpha g[n] + \beta h[n] \xrightarrow{z} \alpha G(z) + \beta H(z) \]

Time Shifting

Delay:

\[g[n - n_0] \xrightarrow{z} z^{-n_0} G(z), \quad n_0 \geq 0 \]

Advance:

\[g[n + n_0] \xrightarrow{z} z^{n_0} \left(G(z) - \sum_{m=0}^{n_0-1} g[m]z^{-m} \right), \quad n_0 > 0 \]
Properties

Change of Scale

\[\alpha^n g[n] \leftrightarrow_z G\left(\frac{z}{\alpha}\right) \]

Initial Value Theorem

\[g[0] = \lim_{z \to \infty} G(z) \]

\(z \)-Domain Differentiation

\[-ng[n] \leftrightarrow_z z \frac{d}{dz} G(z) \]

Convolution in Discrete Time

\[g[n] * h[n] \leftrightarrow_z H(z)G(z) \]
Properties

Differencing

\[g[n] - g[n-1] \xlongequal{z} (1 - z^{-1})G(z) \]

Accumulation

\[\sum_{m=0}^{n} g[m] \xlongequal{z} \frac{z}{z-1}G(z) = \frac{1}{1 - z^{-1}}G(z) \]

Final Value Theorem

\[\lim_{n \to \infty} g[n] = \lim_{z \to 1} (z - 1)G(z) \]

(if the limit exists)
The Inverse z Transform

There is an inversion integral for the z transform,

$$x[n] = \frac{1}{j2\pi} \oint_{C} X(z)z^{n-1} dz$$

but doing it requires integration in the complex plane and it is rarely used in engineering practice.

There are two other common methods,

Synthetic Division
Partial-Fraction Expansion
Synthetic Division

Suppose it is desired to find the inverse z transform of

$$H(z) = \frac{z^3 - \frac{z^2}{2}}{z^3 - \frac{15}{12} z^2 + \frac{17}{36} z - \frac{1}{18}}$$

Synthetically dividing the numerator by the denominator yields the infinite series

$$1 + \frac{3}{4} z^{-1} + \frac{67}{144} z^{-2} + \cdots$$

This will always work but the answer is not in closed form.
Partial-Fraction Expansion

Algebraically, partial fraction expansion for finding inverse z transforms is identical to the same method applied to inverse Laplace transforms. For example,

$$H(z) = \frac{z^2 \left(z - \frac{1}{2} \right)}{\left(z - \frac{2}{3} \right) \left(z - \frac{1}{3} \right) \left(z - \frac{1}{4} \right)}$$

This fraction is improper in z. We could synthetically divide the numerator by the denominator once, yielding a remainder that is proper in z as with the Laplace transform but there is an alternate method that may be preferred in some situations.
Partial-Fraction Expansion

\[H(z) = \frac{z}{z} = \frac{z \left(z - \frac{1}{2} \right)}{\left(z - \frac{2}{3} \right) \left(z - \frac{1}{3} \right) \left(z - \frac{1}{4} \right)} \]

Dividing both sides by \(z \) makes the fraction proper in \(z \) and partial fraction expansion proceeds normally.

\[H(z) = \frac{4}{5} + \frac{2}{z - \frac{1}{3}} - \frac{9}{z - \frac{1}{4}} \]

Then

\[H(z) = \frac{4z}{5} + \frac{2z}{z - \frac{1}{3}} - \frac{9z}{z - \frac{1}{4}} \]
Solving Difference Equations

The unilateral z transform is well suited to solving difference equations with initial conditions. For example,

$$y[n+2] - \frac{3}{2} y[n+1] + \frac{1}{2} y[n] = \left(\frac{1}{4}\right)^n, \quad \text{for } n \geq 0$$

$$y[0] = 10 \quad \text{and} \quad y[1] = 4$$

z transforming both sides,

$$z^2[Y(z) - y[0] - z^{-1} y[1]] - \frac{3}{2} z[Y(z) - y[0]] + \frac{1}{2} Y(z) = \frac{z}{z - \frac{1}{4}}$$

the initial conditions are called for systematically.
Solving Difference Equations

Applying initial conditions and solving,

\[Y(z) = z \left(\frac{16}{3} z^{-\frac{1}{4}} + \frac{4}{1} z^{-\frac{1}{2}} + \frac{2}{3} \right) \]

and

\[y[n] = \left[\frac{16}{3} \left(\frac{1}{4} \right)^n + 4 \left(\frac{1}{2} \right)^n + \frac{2}{3} \right] u[n] \]

This solution satisfies the difference equation and the initial conditions.
Let a signal, $x(t)$, be sampled to form

$$x[n] = x(nT_s)$$

and impulse sampled to form

$$x_\delta(t) = x(t)f_s\comb(f_s t)$$

These two signals are equivalent in the sense that their impulse strengths are the same at corresponding times and the correspondence between times is $t = nT_s$.

\z Transform - Laplace Transform Relationships
z Transform - Laplace Transform Relationships

Let a DT system have the impulse response, $h[n]$, and let a CT system have the impulse response, $h_\delta(t) = \sum_{n=-\infty}^{\infty} h[n]\delta(t - nT_s)$.

If $x[n]$ is applied to the DT system and $x_\delta(t)$ is applied to the CT system, their responses will be equivalent in the sense that the impulse strengths are the same.
z Transform - Laplace Transform Relationships

The transfer function of the DT system is

$$H(z) = \sum_{n=-\infty}^{\infty} h[n]z^{-n}$$

and the transfer function of the CT system is

$$H_\delta(s) = \sum_{n=-\infty}^{\infty} h[n]e^{-nT_ss}$$

The equivalence between them is seen in the transformation,

$$H_\delta(s) = H(z)|_{z \rightarrow e^{sT_s}}$$
The relationship, \(z = e^{sT_s} \), maps points in the \(s \) plane into points in the \(z \) plane and vice versa.

Different contours in the \(s \) plane map into the same contour in the \(z \) plane.
z Transform - Laplace Transform Relationships

\[\frac{3\pi}{T_s} \]
\[\frac{\pi}{T_s} \]
\[\frac{\pi}{T_s} \]
\[\frac{3\pi}{T_s} \]
\[\sigma \]
\[\text{Re}(z) \]
\[\text{Im}(z) \]

\[\frac{3\pi}{T_s} \]
\[\frac{\pi}{T_s} \]
\[\frac{\pi}{T_s} \]
\[\frac{3\pi}{T_s} \]
\[\sigma \]
\[\text{Re}(z) \]
\[\text{Im}(z) \]

\[\frac{3\pi}{T_s} \]
\[\frac{\pi}{T_s} \]
\[\frac{\pi}{T_s} \]
\[\frac{3\pi}{T_s} \]
\[\sigma \]
\[\text{Re}(z) \]
\[\text{Im}(z) \]

\[\frac{3\pi}{T_s} \]
\[\frac{\pi}{T_s} \]
\[\frac{\pi}{T_s} \]
\[\frac{3\pi}{T_s} \]
\[\sigma \]
\[\text{Re}(z) \]
\[\text{Im}(z) \]
The Bilateral z Transform

The bilateral z transform can be used to analyze non-causal signals and/or systems. It is defined by

$$X(z) = \sum_{n=-\infty}^{\infty} x[n]z^{-n} = \sum_{n=0}^{\infty} x[n]z^{-n} + \sum_{n=-\infty}^{-1} x[n]z^{-n}$$

This can be manipulated into

$$X(z) = X_c(z) - x[0] + X_{ac}(z)$$

where

$$X_c(z) = \sum_{n=0}^{\infty} x[n]z^{-n} \quad \text{and} \quad X_{ac}(z) = \sum_{n=0}^{\infty} x[-n]z^n$$
The Bilateral z Transform

The bilateral z transform can be found using the unilateral z transform by these four steps.

1. Find the unilateral z transform $X_c(z)$ and its ROC.

2. Find the unilateral z transform, $X_{ac}\left(\frac{1}{z}\right)$, of the discrete-time inverse of the anti-causal part of $x[n]$.

3. Make the change of variable, $z \rightarrow \frac{1}{z}$, in the result of step 2 and in its ROC.

4. Add the results of steps 1 and 3 and subtract $x[0]$ to form $X(z)$.