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Appendix L - Differential and Difference
Equations

L.1 Introduction

Differential equations are those in which an equality is expressed in terms of a
function of one or more independent variables and derivatives of the function with respect
to one or more of those independent variables. Difference equations are those in which an
equality is expressed in terms of a function of one or more independent variables and
finite differences of the function.  Differential equations are important in signal and
system analysis because they describe the dynamic behavior of continuous-time (CT)
physical systems. Difference equations are important in signal and system analysis
because they describe the dynamic behavior of discrete-time (DT) systems. Discrete-time
is equally-spaced points in time, separated by some time difference t .  In DT signals and
systems the behavior of a signal and the action of a system are known only at discrete
points in time and are not defined between those discrete points in time.

Differential equations have several properties by which they are classified, linear
and non-linear, ordinary and partial, homogeneous and inhomogeneous.  They are also
classified by their order, which is the highest order of a derivative in the equation after it
is put into a standard form, and by the coefficients of the derivatives which may either be
constants, or functions of the independent variable.  Difference equations are classified in
a similar manner in which the order of the difference equation is the highest order
difference after being put into standard form.  Fortunately the great majority of systems
are described (at least approximately) by the types of differential or difference equations
that are easiest to solve, ordinary, linear differential or difference equations with constant
coefficients.  This appendix covers only equations of that type.

L.2 Homogeneous Constant-Coefficient Linear Differential
Equations

Let us begin with an example of the simplest differential equation, a homogeneous,
first-order, linear, ordinary differential equation

2
d y t( )

dt
+ 7 y t( ) = 0. (L.1)

We can streamline the notation by indicating differentiation by

  

d y t( )

dt
=  y ,

d2 y t( )

dt2 =   y ,
d3 y t( )

dt3 =    y , etc… (L.2)
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In (L.2) t is the independent variable and y is the dependent variable, a function of t.
Rewriting (L.1) in the streamlined notation,

2  y + 7y = 0 . (L.3)

A homogeneous, linear, ordinary differential equation is a linear combination of the
dependent variable and its derivatives,  set equal to zero.  We can rearrange  (L.3) into

y = 7y/ 2 .

This equation must be satisfied for any arbitrary value of the independent variable t.  That
means that y, which is a function of t, must have the same functional form as  y .  The only
function which has that property is the exponential function because

d
dt

e t( ) = e t .

Therefore the functional form of the solution of (L.1) is y t( ) = e t , where  is a constant, as
yet undetermined.  The exponential function is unique to or characteristic of this type of
differential equation because it is the only functional form that can solve it.  The
characteristic function of a differential equation is commonly referred to as the
eigenfunction after the German word Eigenfunktion meaning characteristic function.  To
check the validity of this solution form, we put y t( ) = e t  into (L.1) and perform the
indicated operations,

2  y + 7y = 2 e t
+ 7e t

= 0
or 2 + 7 = 0 .

This equation is sometimes referred to as the characteristic equation associated with the
differential equation.  It is an algebraic equation and is satisfied if = 7 / 2 .  Then
y t( ) = e t  is a solution of (L.1) if = 7 / 2  .  But it is not the most general solution.  We
can multiply by an arbitrary constant K to get a solution form y t( ) = Ke t .  When we put it
into (L.3) we get

2  y + 7y = 2K e t
+ 7Ke t

= 0

or 2 + 7 = 0  as before.  This is the most general form of solution.  The particular value of
 which solves the characteristic equation is called an eigenvalue and the solution works

for any arbitrary value of K.

An exact value of K can only be specified by using more information than is
contained in the differential equation itself.  It is found by applying boundary conditions.
In order to specify K one must know the value of y or its first derivative at some particular
value of t.  Suppose it is known that when t is 0, y is 2.  Then from y t( ) = Ke t

2 = Ke 7 /2( ) 0( )
= K K = 2 .
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We see now that the arbitrary constant K is needed to satisfy both the equation and the
boundary condition.  Then the full numerical solution of  with boundary conditions is

y t( ) = 2e 7t /2  (Figure L-1) .

t

y(t)

0.286

2

Figure L-1  The complete solution of the first-order, linear, constant-coefficient, ordinary
differential equation with boundary conditions

In this case the boundary condition was given at t = 0 and, if t represents time, this type of
boundary condition is called an initial condition.  By analogy to the procedures followed
in this example, the solution of any equation of the form  y = ay can be found.

Inhomogeneous Constant-Coefficient Linear Differential Equations

The next step up in equation complexity is the inhomogeneous first-order, linear,
ordinary differential equation.  An inhomogeneous, linear, ordinary differential equation is
a linear combination of the dependent variable and its derivatives set equal to a function of
the independent variable which is often called the forcing function.    For example,

2  y + 7y = 4cos 3t( )  . (L.5)

We can rewrite (L.5) as
y = 7y/ 2 + 2cos 3t( )  . (L.6)

(This form, in which the first derivative of the function is on the left side of the equation
and the right side has the function itself followed by the forcing function, is a standard
way of writing differential equations which is often used in systems of multiple
differential equations.)  We need to find a function y t( )  for which (L.6) is satisfied for any
arbitrary t. If we choose y to be a cosine function of t, that yields a cosine on the right side
but the derivative will be a sine function of t which will appear on the left side and that
does not work.  We could choose a sine function of t and that would make the derivative
have the right form, but not the function itself.  But if we choose a linear combination of a
sine and a cosine maybe we can arrange to have the two sine functions cancel somehow
and leave just a cosine function.  Let’s try a solution of the form
y t( ) = K1 sin 3t( ) + K2 cos 3t( ) .  Substituting that into

2 3K1 cos 3t( ) 3K2 sin 3t( )[ ] + 7 K1 sin 3t( ) + K2 cos 3t( )[ ] = 4 cos 3t( ) .
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For this to be a solution for any arbitrary t, since cosines and sines are different functions
of t, the cosine parts on each side must be equal and the sine parts on each side must be
equal, independently.  That is

6K1 cos 3t( ) + 7K2 cos 3t( ) = 4 cos 3t( )

6K2 sin 3t( ) + 7K1 sin 3t( ) = 0
or

6K1 + 7K2 = 4    and 6K2 + 7K1 = 0.
Solving,

K1 = 24 / 85 and K2 = 28 / 85 .

Therefore y t( ) = 24 / 85( )sin 3t( ) + 28 / 85( )cos 3t( )  is one solution of (L.5).
________________________________________________________________________

The solution form y t( ) = K1 sin 3t( ) + K2 cos 3t( )  could have been written in an
equivalent form by using the trigonometric identity

cos x + y( ) = cos x( )cos y( ) sin x( )sin y( )  .
Then

y t( ) = K cos 3t +( )
where

K = K1
2

+ K2
2 and tan( ) = K1 / K2  .

Sometimes this form is more convenient or appropriate.
________________________________________________________________________

The method used to find the coefficients K1and K2 is called the method of undetermined
coefficients and it can be applied to find a solution to any linear ordinary inhomogeneous
differential equation with constant coefficients.  It is important to point out here that this is
one solution to the equation but not the total solution.  This solution is called the
particular solution and will be denoted here by yp t( ) .  The total solution is the sum of the

particular solution and the solution of the homogeneous form of the equation yh t( )  which
was found in the previous example.  The sum of the two is also a solution of
2  y + 7y = 4cos 3t( )  because 2  y h + 7yh = 0 and if the total solution is y = yh + y p  and that
is substituted into (L.5) we get

2 yh + yp( ) + 7 yh + yp( ) = 2  y h +  y p( ) + 7 yh + y p( ) = 4 cos 3t( )

or

  

2  y h + 7yh

= 0
     

+ 2  y p + 7 yp = 4cos 3t( )

which is the same as the original inhomogeneous equation, (L.5).  Therefore the total
solution to (L.5) is

y t( ) = Ke 7t /2
+

24

85
sin 3t( ) +

28

85
cos 3t( )
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where again, K must be found by matching boundary conditions, but this time with the
total solution, not just the homogeneous solution.  ( In the previous example the
homogeneous solution was the total solution.)  Suppose y is 0 when t is / 3 .  Then

0 = Ke 7 /6
+

24

85
sin( ) +

28

85
cos( ) K = 12.86 .

We can always add the homogeneous solution to the particular solution to get a total
solution because, when we substitute it into the differential equation and do the
differentiations, it always adds to zero.  The homogeneous solution is also called the
transient solution because for stable physical systems described by this kind of equation,
the homogeneous solution decays away with time or the natural response because its form
indicates the nature of the system described by the differential equation.  The particular
solution is also called the steady-state solution because it is the solution which persists
after the transient solution has died away or the forced response because it is the part of
the solution that is forced to exist by the action of the forcing function.

We found the solution above by assuming a particular solution in a form consisting
of a linear combination of sines and cosines y t( ) = K1 sin 3t( ) + K2 cos 3t( ) .  Since sines and
cosines can be expressed in terms of complex exponentials we could change this solution
form to

y t( ) =
K2 jK1

2
e j 3t

+
K2 + jK1

2
e j 3t

or y t( ) =  K 1e
j 3t

+  K 2e
j 3t  where

 K 1 =
K2 jK1

2
and  K 2 =

K2 + jK1

2
. (L.7)

Then, substituting this solution form into the original equation

2  y + 7y = 4cos 3t( ) = 2 e j 3t
+ e j 3t( )

we get

j6  K 1e
j 3t j6  K 2e

j 3t
+ 7  K 1e

j 3t
+ 7  K 2e

j 3t
= 2 e j 3t

+ e j 3t( ) .

Notice that when we equate like functional forms on both sides we get

j6  K 1e
j 3t

+ 7  K 1e
j 3t

= 2e j 3t   and  j6  K 2e
j 3t

+ 7  K 2e
j 3t

= 2e j 3t

or
7 + j6( )  K 1 = 2   and  7 j6( )  K 2 = 2  . (L.8)

For (L.8) to be satisfied  K 1 =  K 2( )
*
, a requirement we have already seen in (L.7).  Solving

the left-hand equation in (L.8),

 K 1 =
14 j12

85
.
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Then

 K 2 =
14 + j12

85
and

yp t( ) =
14 j12

85
e j 3t

+
14 + j12

85
e j3t .

This solution form can be converted into

yp t( ) =
28cos 3t( ) + 24sin 3t( )

85

which is exactly the same as the previous solution form.  Since in this solution method the
undetermined coefficients must always occur in complex conjugate pairs, we can
abbreviate the solution process by finding the solution to 2  y + 7y = 4e j 3t  which is

yp t( ) =
4

7 + j6
e j 3t

=
28 j24

85
cos 3t( ) + j sin 3t( )( )

or

yp t( ) =
28cos 3t( ) + 24sin 3t( ) j24 cos 3t( ) + j28sin 3t( )

85
.

Observe that the real part of this solution is the same as the solution of the original
equation.

We found a particular solution for a particular forcing function 4cos 3t( ) .  Of
course if the numerical coefficients changed we could still find a solution by the same
technique.  But what happens if the functional form of the forcing function changes?
Then the functional form of the solution must also change.  There are many possible
functional forms of forcing functions but the most common ones that occur in engineering
practice are ones which are at least piecewise continuous and differentiable with a finite
number of unique functional forms of the derivatives.  Commonly-occurring functions
which have these properties are 

  
g t( ) = A0 + A1t + A2t

2
+ + AN tN ,  g t( ) = Aeat ,

g t( ) = Acos at( ) , g t( ) = Asin at( )  and sums of products of these functions, for example,

g t( ) = Aeat cos bt( ) + Be ct sin dt( ) .

As long as we restrict ourselves to forcing functions of these forms, we can always find a
particular solution by proposing a solution form containing the forcing function form and
all its unique derivatives.  This may sound unnecessarily restrictive.  After all, do all real
systems have forcing functions of these few forms?  No.  But, as it turns out, all forcing
functions with any engineering usefulness can be expressed as linear combinations of
functions of these forms.  In fact linear combinations of complex sinusoids are sufficient
to describe any forcing function with engineering usefulness.

The next step up in complexity is to a higher-order differential equation.  For
example
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  y + 5  y + 3y = 6t2 . (L.9)

The total solution is the sum of the homogeneous and particular solutions.  By reasoning
similar to that above for the first-order, linear, constant-coefficient, differential equation,
any solution of the homogeneous equation

  y + 5  y + 3y = 0 (L.10)

must be of the functional form e t .  Substituting into (L.10) and solving,

2e t
+ 5 e t

+ 3e t
= 0

or
2

+ 5 + 3 = 0 . (L.11)

This characteristic equation (L.11) is quadratic and there are two solutions 1 = 0.6972
and 2 = 4.303.  So for this second-order differential equation there are two eigenvalues.
Which one should we choose?  Can we use both?  We could propose the solution,
y1h t( ) = K1he

1t as we did in solving the first-order equation.  This solution satisfies the
equation but so does the solution y2h t( ) = K2he 2t .  We would like to find the most general
solution possible.  If we put the sum of these two solutions into the homogeneous
differential equation we get

1
2K1he

1t
+ 5 1K1he 1t

+ 3K1he
1t

+ 2
2K2he 2t

+ 5 2K2he
2t

+ 3K2he 2t
= 0

Then, substituting in the eigenvalues,

  

0.6972( )
2

+ 5 0.6972( ) + 3[ ]
= 0

             
K1he 1t

+ 4.303( )
2

+ 5 4.303( ) + 3[ ]
=0

           
K2he 2t

= 0

and the homogeneous equation is also satisfied by the sum of these two solutions,

yh t( ) = K1e
0.6972 t

+ K2e
4.303t

which is the most general possible solution of the homogeneous equation.  This result can
be generalized to a differential equation of any order.  The solution of the homogeneous
equation is a linear combination of the eigenfunctions, one for each unique eigenvalue.

________________________________________________________________________

The only fly in the ointment occurs when any two eigenvalues are the same.  Then
the corresponding two eigenfunctions are not independent and can be combined into one
eigenfunction.  This happens only rarely in practice so it is not of great practical
significance.  In such a case the needed extra eigenfunction has the functional form, te t .
________________________________________________________________________

A particular solution of (L.9) can be found by proposing a solution which is a
linear combination of the forcing function and all its unique derivatives of the form,
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yp t( ) = At2
+ Bt + C .  Substituting into (L.9) 2A + 5 2At + B( ) + 3 At 2

+ Bt + C( ) = 6t2  and

solving, A = 2 , B = 20 / 3 , C = 88 / 9 .  Therefore the total solution is

y t( ) = yh t( ) + y p t( ) = K1e
0.6972t

+ K2e
4.303t

+ 2t2 20
3

t +
88
9

(L.12)

and the two remaining constants K1 and K2  must be found be applying two independent
boundary conditions.  (The number of boundary conditions needed is always equal to the
order of the differential equation.)

Systems of Linear Differential Equations

So far we have only considered the solution of a single differential equation for a
single unknown function.  A very common situation in signal and system analysis is the
solution of systems of differential equations.  Most systems of interest are described by
more than one differential equation.  An example that will introduce some solution
methods is the  relatively simple two-differential-equation system,

 y 1+ 5 y1 + 2y2 = 10

 y 2 + 3y2 + y1 = 0
(L.13)

with initial conditions y1 0( ) = 1 and y2 0( ) = 0 .

We will solve this system of equations using two different methods.  The first
method will be an ad-hoc method in which we combine the two first-order equations, each
in two functions, into two second-order equations, each in only one function, and then
solve these equations by the methods of the previous section.  The second method is a
more systematic technique of solving the two original first-order equations
simultaneously.  The second method is a natural stepping stone to techniques for solving
systems of arbitrary numbers of first-order equations using matrix methods, which will be
introduced later.

We can rearrange the second equation in (L.13) to form

y1 =  y 2 3y2  . (L.14)

Then, substituting (L.14) into the first equation in (L.13) we get

  y 2 3  y 2 + 5  y 2 3y2( ) + 2y2 = 10
or

  y 2 + 8  y 2 + 13y2 = 10 .

We can solve this equation using the techniques of the previous section and, when we do

we get the characteristic equation 2
+ 8 + 13 = 0, the eigenvalues, 1 = 4 + 3  and

2 = 4 3 , the particular solution y p = 10 /13 , and the total solution
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y2 = K1e
1t

+ K2e
2 t 10 /13 . (L.15)

We can apply the two initial conditions.  The condition y2 0( ) = 0  applied to (L.15) yields
K1 + K2 = 10 /13  and we can use (L.14) with (L.15) and the initial condition y1 0( ) = 1 to

form 1 + 3( )K1 + 2 + 3( )K2 = 17 /13 .  Solving, we get K1 = 0.9841 and K2 = 0.2151
and a total numerical solution

y2 t( ) = 0.9841e 2.268t 0.2151e 5.732t 0.769 . (L.16)

Now we can use (L.14) along with (L.16) to find y1 t( ) ,

y1 t( ) = 0.720e 2.268t 0.588e 5.732t
+ 2.308 . (L.17)

Notice that because of the relationship between the two solution functions y1 t( )
and y2 t( )  in (L.13), that the eigenvalues for the two functions are the same.  Only the
constants multiplying the eigenfunctions and the particular solutions are different.  The
fact that the eigenvalues are the same is a result of the fact that the two first-order
differential equations are coupled, therefore not independent.

Now we will solve the system, (L.13), using a different technique.  Since each
equation in (L.13) is first-order we assume the solution forms y1h t( ) = K1he

t  and
y2h t( ) = K2he t .  Then, substituting these forms into (L.13) and simplifying we get two,
first-order, coupled characteristic equations

+ 5( )K1h + 2K2h = 0

K1h + + 3( )K2h = 0
. (L.18)

This is a system of two equations in three unknowns so we should not expect to be able to
find a unique solution, but in this case, because of the form of the equations,   we can       solve 
for           . Rearranging (L.18)

K1h

K2h

=
2

+ 5

K1h

K2h

= + 3( )

(L.19)

Then, equating the two equations in (L.19) ,

2
+ 5

= + 3

or 2
+ 8 + 13 = 0.  This is exactly the same characteristic equation we got in the previous

solution and the eigenvalues are again

1 = 4 + 3 and 2 = 4 3 . (L.20)



L-10

So there are two values of  for which (L.18) can be satisfied.  This is a little different
from the ordinary experience of solving two simultaneous equations.  Even though we
have three unknowns we are still able to solve for one of them.  But, when we do, we get
two possible values for that unknown instead of one.  We have not found unique values
but we have narrowed the field of possible values.

Now let’s do what one would ordinarily do in solving algebraic equations, choose
one eigenvalue 1  and put it into the equations in (L.18) and try to find the arbitrary
constants K1h  and K2h  (with numerical values substituted into (L.18))

K1h =
2

3 + 1
K2h

and
2

3 + 1
1+ 3

 

 
 

 

 
 K2h = 0. (L.21)

Equation (L.21) can be satisfied if K2h  is zero or the coefficient of K2h  equals zero, or
both.  In other words, to find a non-trivial solution (K2h 0 ) the coefficient

2

3 + 1
1+ 3

 

 
 

 

 
  must be zero.  Simplifying (L.21) we get 0( )K2h = 0 .  Therefore, for

this eigenvalue, we know it is possible for K2h  to be non-zero but we don’t yet know what
it is.  This should have been expected because we are trying to solve a system of two
equations in three unknowns and there is no unique solution.  If we do the same thing with
the other eigenvalue we get the same result.  But we can say one more thing that is useful
about the arbitrary constants K1h  and K2h .  From (L.19)

K1h

K2h

= + 3( ) .

So, for the first eigenvalue,
K1h

K2h

= 1 3 = 0.732 .

Similarly, for the second eigenvalue,

K1h

K2h

= 1 + 3 = 2.732

We have not yet found unique solutions for all three unknowns but we have established
certain relationships among them.  To accommodate these results for the two eigenvalues
we need homogeneous solutions which are linear combinations of the two eigenfunctions
corresponding to the two eigenvalues.  So we assume solutions of the forms,

y1h t( ) = K11he
1t

+ K12he
2t  and y2h t( ) = K21he

1t
+ K22 he

2t

where
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K11h

K21h

= 0.732 and
K12h

K22h

= 2.732 (L.22)

We need something to establish the exact values of the constants instead of just their ratios
and that requires using the initial conditions.  But before applying the initial conditions we
need a particular solution to complete the total solution.  Since the forcing function is a
constant we can assume particular solutions

y1p t( ) = K1p   and  y2 p t( ) = K2 p (L.23)

Doing that and solving, we get

K1p = 30 /13 , K2 p = 10 /13. (L.24)

So the total solutions are of the forms

y1 t( ) = K11he
1t

+ K12 he
2 t

+ 30 /13 and y2 t( ) = K21he
1t

+ K22 he
2 t 10 /13 (L.25)

Since we know two relations (L.22) among the four arbitrary constants  there are actually
only two unknowns, so we need only two initial conditions.  We can now use y1 0( ) = 1
and y2 0( ) = 0 .  Applying the initial conditions we get

y1 0( ) = K11h + K12 h + 30 /13 = 1  and  y2 0( ) = K21h + K22 h 10 /13 = 0 . (L.26)

These two equations, together with  (L.25) lead to the final numerical solution,

y1 t( ) = 0.720e 2.268t 0.588e 5.732t
+ 2.308 (L.27)

and
y2 t( ) = 0.9841e 2.268t 0.2151e 5.732t 0.769 (L.28)

This was only the next step up in differential-equation complexity, a two-
differential-equation system, and a simple one at that!  Try to imagine what it would be
like to solve more complicated systems of differential equations.  Fortunately, systematic
techniques have been developed to solve systems of equations like this.  Although these
techniques don’t actually reduce the total amount of calculation they do arrange the
computations in a way that makes them easy to program on a computer and therefore
makes the solutions much easier in practice for humans to obtain.

MATLAB can solve systems of differential equations.  Below is the MATLAB
help message for the command, DSOLVE.

DSOLVE Symbolic solution of ordinary differential equations.

    DSOLVE('eqn1','eqn2', ...) accepts symbolic equations representing

    ordinary differential equations and initial conditions.  Several

    equations or initial conditions may be grouped together, separated

    by commas, in a single input argument.
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    By default, the independent variable is 't'. The independent

    Variable may be changed from 't' to some other symbolic variable by

    Including that variable as the last input argument.

    The letter 'D' denotes differentiation with respect to the

    independent variable, i.e. usually d/dt.  A "D" followed by a digit

    Denotes repeated differentiation; e.g., D2 is d^2/dt^2.  Any

    characters immediately following these differentiation operators are

    taken to be the dependent variables; e.g., D3y denotes the third

    derivative of y(t). Note that the names of symbolic variables should

    not contain the letter "D".

    Initial conditions are specified by equations like 'y(a) = b' or

    'Dy(a) = b' where y is one of the dependent variables and a and b

    are constants.  If the number of initial conditions given is less

    than the number of dependent variables, the resulting solutions will

    obtain arbitrary constants, C1, C2, etc.

    Examples:

       dsolve('Dx = -a*x') returns

         ans = exp(-a*t)*C1

       x = dsolve('Dx = -a*x','x(0) = 1','s') returns

         x = exp(-a*s)

       y = dsolve('(Dy)^2 + y^2 = 1','y(0) = 0') returns

         y =

         [  sin(t)]

         [ -sin(t)]

       S = dsolve('Df = f + g','Dg = -f + g','f(0) = 1','g(0) = 2')

       returns a structure S with fields

         S.f = exp(t)*cos(t)+2*exp(t)*sin(t)

         S.g = -exp(t)*sin(t)+2*exp(t)*cos(t)

       dsolve('Df = f + sin(t)', 'f(pi/2) = 0')

       dsolve('D2y = -a^2*y', 'y(0) = 1, Dy(pi/a) = 0')

       S = dsolve('Dx = y', 'Dy = -x', 'x(0)=0', 'y(0)=1')

       S = dsolve('Du=v, Dv=w, Dw=-u','u(0)=0, v(0)=0, w(0)=1')

       w = dsolve('D3w = -w','w(0)=1, Dw(0)=0, D2w(0)=0')

    See also SOLVE, SUBS.

L.3 Linear Ordinary Difference Equations

Finite Difference Approximations to a Derivative
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To illustrate a connection between difference equations and differential equations,
let us begin with (L.1), the homogeneous, first order, constant-coefficient ordinary
differential equation in the previous section,

  2
d y t( )

dx
+ 7 y t( ) = 0 , (L.29)

and approximate it by a difference equation.  We can do this by approximating derivatives
by finite differences.  Recall these definitions of a derivative,

d y t( )

dt
= lim

t 0

y t + t( ) y t( )

t
,

d y t( )

dt
= lim

t 0

y t( ) y t t( )

t
and

d y t( )

dt
= lim

t 0

y t + t( ) y t t( )

2 t
.

At any point at which y t( )  is differentiable, any of these definitions of a derivative yield
exactly the same result when the limit is taken.  A derivative in continuous time can be
approximated by a finite difference in discrete time by

y n + 1( ) t( ) y n t( )

t
.

This is called a forward difference because it uses the present or current value of y y n t( )

and the next or future value of y y n + 1( ) t( ) .  Similarly

y n t( ) y n 1( ) t( )
t

is a backward difference and

y n + 1( ) t( ) y n 1( ) t( )
2 t

is a central difference.  In the limit as t  approaches zero these are all the same, but in
discrete time, t  is fixed and is not zero and these three approximations to a continuous-
time derivative are, in general, different.

As an illustration we will convert the differential equation, (L.29), to a difference
equation by using a forward-difference approximation,

2
y n + 1( ) t( ) y n t( )

t
+ 7y n t( ) = 0  . (L.30)
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To simplify the notation let y n[ ] = y n t( )  where the square brackets, [ ] , distinguish a
function of discrete time from a function of continuous time which is indicated by using
parentheses, ( ) .  In this notation, time is not explicitly indicated but, since the time
between consecutive discrete-time values of the function, y is always t , we do not need
to explicitly indicate time.  Using the simplified notation, (L.30) becomes

2
y n + 1[ ] y n[ ]

t
+ 7 y n[ ] = 0

or
2 y n + 1[ ] y n[ ]( ) + 7 t y n[ ] = 0 (L.31)

which is a homogeneous difference equation.

________________________________________________________________________

Some authors use the notation, yn = y n t( )for the nth value of y.  This is an exact
equivalent of y[n].
________________________________________________________________________

First differences are analogous to first derivatives.  In finite-difference
mathematics we can denote a first difference of a discrete-time function x n[ ]  by the use of
the operator, ( )  and define that operation by x n[ ]( ) = x n + 1[ ] x n[ ] .  This is the first

forward difference of x n[ ] .  Then, consistent with that definition, a first backward
difference of x n[ ]  would be the first forward difference of x n 1[ ]  or

x n 1[ ]( ) = x n[ ] x n 1[ ] .  These operations are called differencing and are analogous to
the operation of differentiation for continuous-time functions.  Where it is convenient and
unambiguous we can use a shorthand notation for a difference just like the shorthand
notation for a derivative of a continuous-time function x n[ ]( ) =  x n[ ] .

There is a set of rules for differencing which exactly parallels the analogous rules
for differentiation (Table 2.3.1.1).
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Table 2.3.1.1  Rules for differences and differentiation
Constant, C

C( ) = 0
dC
dt

= 0

Constant times a function

C x n[ ]( ) = C  x n[ ]
d
dt

C x t( )( ) = C  x t( )

Sum of functions

x n[ ] + y n[ ]( ) =  x n[ ] +  y n[ ]
d
dt

x t( ) + y t( )( ) =  x t( ) +  y t( )

Product of functions

x n[ ]y n[ ]( ) = x n[ ]  y n[ ] + y n + 1[ ]  x n[ ]
d
dt

x t( ) y t( )( ) = x t( )  y t( ) +  x t( )y t( )

(Notice the n + 1[ ]).

Quotient of functions

x n[ ]

y n[ ]

 

 
  

 
 =

y n[ ]  x n[ ] x n[ ]  y n[ ]

y n + 1[ ]y n[ ]

d
dt

x t( )

y t( )

 

 
  

 
 =

y t( )  x t( ) x t( )  y t( )

y2 t( )

(Notice the n + 1[ ]).

Power function

Cn( ) = Cn C 1( )
d
dt

tn( ) = ntn 1

Cosine

cos n( )( ) = 2sin
1
2
 

 
 
 
sin n +

1
2

 

 
 
 

d
dt

cos t( )( ) = sin t( )

Sine

sin n( )( ) = 2sin
1
2
 

 
 
 
cos n +

1
2

 

 
 
 

d
dt

sin t( )( ) = cos t( )

In case you are asking why the exponential function was left out of the table, the answer

is, it wasn’t.  It is hiding inside the power function.  In the formula Cn( ) = Cn C 1( ) , C

is a constant, possibly complex.  Therefore it could be represented by  C = e  where  is
an appropriately-chosen constant, also possibly complex.  Then the power function
difference becomes

e( )
n

( ) = e n( ) = e n e 1( ) .

Equation, (L.31), is a finite-difference approximation to equation, (L.29).  Written
with the new shorthand notation (L.31) becomes
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2  y n[ ] + 7 t y n[ ] = 0 (L.32)

Notice the similarity of (L.32) to the first-order differential equation it approximates
2  y t( ) + 7y t( ) = 0 .  To solve (L.32) we can re-write it in recursion form

y n + 1[ ] =
2 7 t

2
y n[ ] . (L.33)

In recursion form, the difference equation expresses the next value of y y n + 1[ ]  in terms
of the present value of y y n[ ] . In words, the n + 1[ ] th value of y is a multiple of the nth
value of y, for any n.  Equation (L.33) can be re-arranged to form,

y n[ ] =
2

2 7 t
y n + 1[ ] (L.34)

which expresses the present value of y in terms of the next value of y.  Also, from (L.33)
we can write

y n[ ] =
2 7 t

2
y n 1[ ]   . (L.35)

in which the present value is written in terms of the immediate past value.  Therefore, by
using (L.34) and (L.35) if we know any particular value in the sequence of y[n] values we
can find all the rest and we can express the entire sequence in terms of any single value in
the sequence.  For example, if we know y[0],

  

y 1[ ] =
2 7 t

2

 

 

 

 

1

y 0[ ]

y 0[ ] =
2 7 t

2
 

 

 

 

0

y 0[ ]

y 1[ ] =
2 7 t

2

 

 

 

 

1

y 0[ ]

y 2[ ] =
2 7 t

2

 

 

 

 

2

y 0[ ]

or, more compactly,

y n[ ] = y 0[ ]
2 7 t

2
 

 
 
 

n

implying that we need the value of y[0] to exactly determine the sequence values.  Of
course, any particular value of y is sufficient, so a more general form of the solution is

y n[ ] = K
2 7 t

2
 

 
 
 

n

.
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Suppose we know that y 0[ ] = 2  as in the differential equation example.  Then the exact
solution is determined just as it was in the case of the solution of differential equations.

The nature of the solution of the difference equation and how closely it
approximates the exact solution of the differential equation depends on the choice of t .
For a good approximation, t , should be small compared to the time constant of the
system which, in this case, is 2 / 7  second.  Figure L-2 illustrates the effect of different
choices of t  by graphing the solution of the differential equation and the solution of the
difference equation approximation to it for four different choices of t .

t-0.5 1

y(t)

-6

6

n-1 2

y[n]

-6

6

∆t = 0.5

t-0.5 1

y(t)
100

 

n-2 4

y[n]

100

∆t = 0.25

t-0.5 1

y(t)
12

n-5 10

y[n]
12

∆t = 0.1

t-0.5 1

y(t)
12

 

n-10 20

y[n]
12

∆t = 0.05

Figure L-2  Solution of the first-order, linear, constant coefficient, ordinary difference
equation approximating a differential equation for four different choices of t

Notice that when t = 0.5 , y n[ ]  is not only inaccurate, it is totally different in character
from y t( ) .  It alternates sign with n because the quantity 2 7 t( ) / 2  is negative.  At a

value of t = 2 / 7 , which is the time constant of the solution of the original differential
equation, the quantity 2 7 t( ) / 2  is zero.  For t  less than 2 / 7  the sign of y n[ ]  no

longer alternates with n but if the quantity 2 7 t( ) / 2  is near zero the solution y n[ ]  is

still very inaccurate.  As t  is made smaller the solution y n[ ]  approaches samples of the
exact solution y t( )  as can be seen in the bottom two plots.

MATLAB has a function for finding differences diff.  It operates on a vector of
length N and returns a vector of forward differences of length N 1.  For example,

»diff([4 1 -9 3 -4 8])

ans =
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    -3   -10    12    -7    12
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The MATLAB code,

dt = 1/16 ; N = 16 ; n = 0:N ; x = sin(2*pi*n*dt) ;

subplot(2,1,1) ;

p = stem(n,x,'k','filled') ;

set(p,'LineWidth',2,'MarkerSize',4) ;

xlabel('n') ; ylabel('x[n]') ; axis([0 16,-1,1]) ;

subplot(2,1,2) ; nd = 0:N-1 ;

p = stem(nd,diff(x),'k','filled') ;

set(p,'LineWidth',2,'MarkerSize',4) ;

xlabel('n') ; ylabel('\Delta(x[n])') ; axis([0 16,-1,1]) ;

produces the graphs in Figure L-3,

0 2 4 6 8 10 12 14 16
-1

-0.5

0

0.5

1

n

x[
n]

0 2 4 6 8 10 12 14 16
-1

-0.5

0

0.5

1

n

∆
(x

[n
])

Figure L-3 A DT function and its first forward difference

Homogeneous Linear Constant-Coefficient Difference Equations

The previous example was introduced as a way of approximating the solution of a
differential equation.  Methods like this are used in numerical analysis for exactly that
purpose.  However it is important to point out that the solution of difference equations is
more than just a way of approximating the solution of differential equations.  There are
systems which are inherently discrete-time and are not described by differential equations.
In those situations the solution of the difference equation is the exact solution because the
system is inherently discrete-time.

One classical example of an inherently discrete-time system is a financial system
in which interest on an investment is accrued at discrete times.  Suppose there is an initial
investment of P dollars (the principal) and it earns interest at an annual percentage interest
rate r compounded annually.  Then t  is one year and n is the number of the present year.
Let the beginning of year zero be the time at which the money was invested and let A[n]
be the amount of money in the account at the beginning of the nth year.  Then the
difference equation describing this DT system is
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A n[ ] = 1 +
r

100
 

 
 
 
A n 1[ ],

or

A n[ ] 1 +
r

100
 

 
 
 
A n 1[ ] = 0 (L.36)

and the initial condition is A 0[ ] = P .  This can also be written in the form

 A n 1[ ]
r

100
A n 1[ ] = 0 ,

which emphasizes its similarity to a first order, homogeneous differential equation.  This
is a linear, constant-coefficient, homogeneous difference equation.  The solution of (L.36)
is of the form

A n[ ] = K 1 +
r

100
 

 
 
 

n

and the constant, K, is obviously P in this case.  Therefore the exact solution of (L.36) is

A n[ ] = P 1+
r

100
 

 
 
 

n

.

We have just solved a particular linear, constant-coefficient, homogeneous
difference equation.  We can generalize to any linear, constant-coefficient homogeneous
difference equation.  Just as the exponential function of the form Ae t  where A and  are
constants (possibly complex), is the eigenfunction for linear, constant-coefficient
homogeneous differential equations of the form

  
y n( ) t( ) + an 1 y n 1( ) t( ) + + a2   y t( ) + a1  y t( ) + a0 y t( ) = 0 (L.37)

the eigenfunction for linear, constant-coefficient homogeneous difference equations of the
form

  
y n + k[ ] + an +k 1 y n + k 1[ ] + + a2 y n + 2[ ] + a1 y n + 1[ ] + a0 y n[ ] = 0 (L.38)

 is a function of the form y n[ ] = A n  where A and  are constants (possibly complex).  To
illustrate a similarity to the eigenfunctions of differential equations, we can express  as
an exponential = e  where = ln( ) .  Then the form of the eigenfunction is

y n[ ] = A n
= A e( )

n
= Ae n

which is very similar to the form of the exponential eigenfunctions for differential
equations.  The difference is that t can have any real value and n can only have real integer
values.
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Inhomogeneous Linear Constant-Coefficient Difference Equations

Most investment is not done as described in the example in the previous section.  It
is much more common for an investor to begin an investment program with an initial
investment and to add to the account with regular contributions.  Let’s now modify the
previous example to include this effect.  Let the yearly contribution, made at the end of
each year, be C.  The new difference equation is

A n[ ] = 1 +
r

100
 

 
 
 
A n 1[ ] + C .

This can be rewritten as

A n[ ] 1 +
r

100
 

 
 
 
A n 1[ ] = C (L.39)

or

 A n 1[ ]
r

100
A n 1[ ] = C .

Equation (L.39) is an inhomogeneous linear, constant-coefficient, difference equation.
We already know the solution

Ah n[ ] = Kh 1 +
r

100
 

 
 
 

n

of the corresponding homogeneous difference equation, (L.36), which is denoted here
with a subscript, h to distinguish it from the particular solution.  Now we need the
particular solution of the difference equation.  Since the forcing function is a constant C
the particular solution should be in the form of the forcing function and all its unique
differences.  Of course the first difference (and all higher differences) of a constant is zero
so the particular solution is in the form of a constant A p n[ ] = K p .  Substituting into (L.39)
we get

K p 1+
r

100
 

 

 

 
Kp = C .

Solving forK p , K p = 100C / r .  Then the total solution of (L.39) is

A n[ ] = Kh 1+
r

100
 

 
 
 

n

100
C
r

.

Applying the initial condition,

A 0[ ] = P = Kh 100
C
r

Kh = P + 100
C
r

and

A n[ ] = P + 100
C
r

 

 
 
 

1+
r

100
 

 
 
 

n

100
C
r

.
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To make the example concrete let the parameter values be P = $10,000 , C = $1,000  and
r = 6%.  Figure L-4 shows the accumulation of account value over a 40 year period.

0 5 10 15 20 25 30 35 40
0

Account Value Accumulation 
Over a 40 year period

Year, n

A
cc

ou
nt

 V
al

ue
, A

[n
] 

$100,000

$200,000

$300,000

With Yearly Contribution

Without Yearly Contribution

$10,000 Initial Investment
$1,000 Yearly Contribution
6% per annum interest rate

Figure L-4  Account value accumulation over a 40 year period with $10,000 initial
investment at 6% interest compounded annually, with and without $1,000 per year

contribution

Albert Einstein was once asked by a reporter what the most powerful force in the universe
was.  Looking at the graph of accumulation of wealth over time in Figure L-4 one can well
understand why his answer was “compound interest”.

As with differential equations, different forcing functions produce different
particular solution forms.  Some commonly occurring forcing functions and particular
solution forms are (A, K, a and k are constants),

  Forcing Function     Particular Solution Form

Constant, A Constant, K

Aan Kan

Ank

  
K0 + K1n + K2n

2
+ + Kkn

k

sin An( ) or cos An( ) K1 sin An( ) + K2 cos An( )

nkan

  
an K0 + K1n + K2n

2
+ + Kkn

k( )

         an sin An( ) or an cos An( ) an K1 sin An( ) + K2 cos An( )[ ]
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Systems of Linear Difference Equations

As was true of differential equation, a very common situation in signal and system
analysis is the solution of systems of difference equations.  Consider the two-difference-
equation system

3y1 n[ ] + 2 y1 n 1[ ] + y2 n[ ] = 0

4 y2 n[ ] + 2y2 n 1[ ] + y1 n[ ] = 5
(L.40)

with initial conditions y1 0[ ] = 0 and y2 0[ ] = 2 .  The functional form of the solutions is the
eigenfunction n .  The homogeneous solutions are of the forms y1 n[ ] = Kh1

n  and
y2 n[ ] = Kh2

n .  Substituting the eigenfunction form into (L.40) and simplifying we get the
characteristic equations,

3 + 2( )Kh1 + Kh 2 = 0

Kh1 + 4 + 2( )Kh 2 = 0
(L.41)

We can combine the two equations in (L.41) to form,

3 + 2
=

Kh1

Kh2

=
4 + 2

(L.42)

or 11 2
+ 14 + 4 = 0 .  Therefore the two eigenvalues are  1 = 0.4331 , 2 = 0.8396 ..

The forms of the homogeneous solutions are y1h n[ ] = Kh11 1
n

+ Kh12 2
n  and

y2h n[ ] = Kh 21 1
n

+ Kh22 2
n  and, enforcing(L.42),

Kh11

Kh21

= 0.618 and
Kh12

Kh22

= 1.618  . (L.43)

Since the forcing functions are constants we can assume particular solutions y1p n[ ] = K p1

and  y2 p n[ ] = Kp 2 .  Doing that and solving, we get K p1 = 0.1724 and K p2 = 0.8621.  So
the total solution is of the form

y1 n[ ] = Kh11 1
n

+ Kh12 2
n 0.1724  and y2 n[ ] = Kh21 1

n
+ Kh 22 2

n
+ 0.8621

We can now use y1 0[ ] = 0 and y2 0[ ] = 2 .  Applying the initial conditions we get

y1 0[ ] = Kh11 + Kh12 0.1724 = 0   and  y2 0[ ] = Kh21 + Kh22 + 0.8621= 2.

These two equations, together with (L.43) lead to the final numerical solution

Kh11 = 0.557 , Kh12 = 0.3841

Kh21 = 0.9005 , Kh22 = 0.2374

y1 n[ ] = 0.557 0.4331( )
n

0.3841 0.8396( )
n

0.1724  (L.44)
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and

y2 n[ ] = 0.9005 0.4331( )
n

+ 0.2374 0.8396( )
n

+ 0.8621 . (L.45)

Using vectors and matrices there is a more systematic way of solving systems of
differential and difference equations.  (See Appendix J.)
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Exercises

(On each exercise, the answers listed are in random order.)

1. Find the solutions of these differential equations with the boundary conditions
indicated.

(a)  y = 10y , y 0( ) = 1 (b) 3  y 4 y = 0 , y 2( ) = 1

(c)
 y 

2
+ y = 0 ,

d
dt

y t( )( )
t = 0

= 4

Answers: y t( ) = 0.069e4 t /3 y t( ) = e 10 t y t( ) = 2e 2t

2. Find the solutions of these differential equations with the boundary conditions
indicated.

(a)  y + 10 y = 5 , y 0( ) = 0

(b) 3  y 4 y = 10cos 20 t( ) , y 0( ) = 0

(c)   y + 10  y + 100y = e 5t , y 0( ) = 10 ,
d
dt

y t( )( )
t = 0

= 1

(d) 4   y + 10  y + 8y = sin 10 t( ) , y 0( ) = 0 ,
d
dt

y t( )( )
t = 0

= 0

(e)   y t( ) + 5  y t( ) + 10 y t( ) = 4   ,  y 0( ) = 1 ,
d
dt

y t( )( )
t = 0

= 3   .

Answers:

y t( ) = 10.05 10 6 j0.003013( )e
5+ j 7( )t /4

+ 10.05 10 6
+ j0.003013( )e

5 j 7( )t /4

0.2522 10 3 sin 10 t( ) 20.1 10 6 cos 10 t( )

y t( ) =
1
2

1 e 10 t( )

y t( ) = 4.993 j2.83( )e
10 j 300( )t /2

+ 4.993 + j2.83( )e
10+ j 300( )t /2

+
e 5t

75
y t( ) = 0.00113e4 t /3 0.00113cos 20 t( ) + 0.053sin 20 t( )

y t( ) = e 5t /2 0.6cos 15t / 2( )
3

15
sin 15t / 2( ) + 0.4

3. Solve the system of differential equations
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 y 1+ 2 y1 + 8y2 = 0

 y 2 + y2 + 5y1 = 4

with initial conditions y1 0( ) = 3 and y2 0( ) = 6 .

Answer:
y1 t( ) = 1.844e 7.844t

+ 5.686e4.844t 0.8421

y2 t( ) = 1.347e 7.844t 4.864e4.844t
+ 0.2105

4. Find the first derivative and then approximations to the first derivative, using the
first forward, backward and central differences, of the function x t( ) = e t  at time
t = 1, using t = 1,0.1 and 0.01.

Answers: 0.3697 0.3684 0.4323 0.36788 0.366
0.35 0.387 0.36788 0.632 0.2325

5. Convert the differential equation with an initial condition

4  y t( ) + 8 y t( ) = 0 , y 0( ) = 10

to a difference equation using backward differences, with t = 0.05 , solve the
resulting difference equation and plot a graph of the discrete-time solution y n[ ]  vs.
n  for 0 n < 40.  Compare the solution to samples of the solution of the
differential equation y t( ) = 10e 2t .

6. Repeat Exercise 5 using forward differences instead of backward differences and
compare the solutions.

7. Find the total solution to the difference equation 4 y n + 1[ ] + y n[ ] = 0 with the
initial condition y 0[ ] = 5 .

Answer y n[ ] = 5 1 / 4( )
n

8. Find the total solution to the difference equation y n[ ] + y n 1[ ] + 2y n 2[ ] = 0
with the initial conditions y 0[ ] = 5 and y 1[ ] = 3.

Answer: y n[ ] = 6.5 1.414( )
n
cos 0.694 + 1.932n( )

9. A discrete-time function y n[ ]  obeys the difference equation 2 y n[ ] + y n 1[ ] = 10
and satisfies the initial condition y 0[ ] = 4 .  Using the solution complete this table:



L-27

n y n[ ]

1 __

2 __

3 __

4 __

Check your total solution by testing the numbers in the table against the original
difference equation.

10. Find the total solution of the difference equation y n[ ] 4 y n 1[ ] = e 2n  subject to
the initial conditions y 0[ ] = 0 .

Answer y n[ ] = 0.035 4( )
n

e 2n[ ]

11. Find the total solution of the difference equation y n[ ] + 10y n 1[ ] = 8  subject to
the initial condition y 0[ ] = 2  .

Answer y n[ ] =
14 10( )

n
+ 8

11

12. Find  the  to t a l  so lu t ion  o f  the  d i f f e rence  equa t ion

3y n[ ] + 8y n 1[ ] + 4 y n 2[ ] = 2cos
2 n

7
 

 
 
 
 subject to the initial conditions

y 0[ ] = 1 and y 1[ ] = 0 .

Answer

y n[ ] = 2.237 2 / 3( )
n

+ 0.903 2( )
n

+ 0.1355sin 2 n / 7( ) + 0.334 cos 2 n / 7( )

13. Find  the  to t a l  so lu t ion  o f  the  d i f f e rence  equa t ion
y n[ ] + 4 y n 1[ ] + 2 y n 2[ ] = cos n / 8( )  subject to the initial conditions

y 0[ ] = 3 , y 1[ ] = 0.

Answer:

y n[ ] = 3.385 2 + 2( )
n

0.523 2 2( )
n

+ 0.1651cos n / 8( ) + 0.1412sin n / 8( )

14. Solve the two-difference-equation system

5 y1 n[ ] + 2 y1 n 1[ ] y2 n 1[ ] = 2

6y2 n[ ] + 3y2 n 1[ ] + 3y1 n 1[ ] = 0

with initial conditions y1 0[ ] = 4  and y2 0[ ] = 1.

Answer:
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y1 n[ ] =
45
54 1

n 279
54 2

n
+

1
3

and y2 n[ ] =
5

54 1
n

+
31
54 2

n
+

1
3

 .

15. After time t = 0 a circuit is described by the differential equation Ri t( ) + L  i t( ) = A
where i t( )  is the current through the series combination of a resistor R an inductor
L and a voltage source and the voltage source is a constant  voltage A.  Assume
that there is initially no stored energy in the circuit.  Then the initial current must

be zero because of the inductor.  That is, i 0+( ) = 0 .  If the resistance R is 10  and

the inductance  L is 2 H and A is 10 V, find the total numerical solution i t( )  for all
time.

16. A current source 5sin 20000 t( )  is suddenly applied at time t = 0, to the parallel
combination of an inductance of 10 mH, a resistance of 20  and a capacitance of
5 µF.  There is no energy stored in the circuit before time t = 0.  Find the total
numerical solution for the voltage across the four parallel elements for all time.

17. Write and solve a differential equation for the voltage vC t( )  in the circuit below
for time t > 0 then find an expression for the current i t( )  for time t > 0.

R  = 2 Ω1 C = 3 F

V = 10 V R  = 6 Ω2
t = 0

i(t)

i (t)

v (t)
+-

s i  (t)

s

C

C

18. (a) Find the first derivative and then approximations to the first derivative,
using the first forward, backward and central differences, of the function
x t( ) = cos 8 t( )  at time t = 1 / 32  using t = 0.25,0.1,0.01.

(b) Approximate the differential equation for the voltage vC t( )   found in
Exercise 17 with a difference equation, using a t  of one-tenth of the circuit’s
time constant and numerically solve for the voltage vC t( )  over a time span of 5
time constants beginning at time t = 0 by iteration using MATLAB.  Graph the
exact solution vC t( )  and the numerical solution vC n t[ ]  on the same time scale for
comparison.

19. A second derivative is a first derivative of a first derivative.  Then a second
difference should be a first difference of a first difference.  Show that a second
difference can be written as

2 x n[ ] = x n[ ]( ) = x n + 2[ ] 2x n + 1[ ] + x n[ ]
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and that a third difference can be written as

3 x n[ ] = x n[ ]( )( ) = x n + 3[ ] 3x n + 2[ ] + 3x n + 1[ ] x n[ ]  .
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20. Mortgage loan payments are usually based on a system of payment in which the
debt is retired by making equal monthly payments over the life of the loan.  Every
month interest accumulates on the unpaid balance.  In each monthly payment some
of it pays interest costs and the rest is applied to the principle.  Assign these
variables:

A Loan amount
r Annual interest rate in percent
M Total payment at the end of the nth month, a constant

    I n[ ]  Interest payment at the end of the nth month
   P n[ ] Principle payment at the end of the nth month

N Total number of months to pay the loan

Write difference equations expressing the relationships between these quantities.
Let the time increment be one month.  Find formulas for the monthly interest
payment, the monthly principle payment and the overall monthly payment.  Then
find the monthly payment for a $100,000 loan for 30 years at a 10% annual interest
rate.  (The formula for the summation of a finite geometric series

rn

n=0

N 1

=

N , r = 1

1 rN

1 r
, r 1

 may prove useful.)

21. A water tank is filled by an inflow x t( )  and is emptied by an outflow y t( ) .  The
outflow is controlled by a valve which offers resistance R to the flow of water out
of the tank.  The water height in the tank is h t( )  and the surface area of the water is
A, independent of height (cylindrical tank).  The outflow is related to the water
height (head) by

y t( ) =
h t( )

R
.

(a) Write the differential equation for the water height.

(b) If the valve resistance is 10 s/m2 , and the inflow is 0.05 m3 / s , at what
water height will the inflow and outflow rates be equal, making the water height
constant?

(c) Let the tank’s full height be 1.5 m, let the initial water height at time t = 0

be 0.5 m and let the tank diameter be 1 m.  If the inflow is a constant 0.2 m3 / s
when will the tank start to overflow?
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Inflow, x(t)

h(t)

Outflow, y(t)

R

Surface area, A

Valve

22. Pharmacokinetics is the study of how drugs are absorbed into, distributed through,
metabolized by and excreted from the human body.  Some drug processes can be
approximately modeled by a “one compartment” model of the body in which V is
the volume of the compartment, Cp  is the drug concentration in that compartment,
kel  is a rate constant for excretion of the drug from the compartment and k0  is the
infusion rate at which the drug enters the compartment.  These can be combined
into a single differential equation for the drug concentration as a function of time,

V
d
dt

Cp t( )( ) = k0 VkelCp t( )  .

(a) Let the parameter values be kel = 0.4hr 1, V = 20 l and k0 = 100 mg/hr
(where “l” is the symbol for liter).  If the initial drug concentration is
Cp 0( ) = 10 mg/l , plot the drug concentration as a function of time for 10 hrs.

23. The decay of radioactive substances is governed by the principle that the rate of
decay is proportional to the amount of the substance remaining.  If the decay rate
constant, k, of radium is 1.4 10 11s 1 what is its half-life in years?  (Half-life is
the time in which half of the original amount of a substance has decayed.)

24. Automobile ignition operates on the general principle of storing energy in an
inductor (the spark coil) and then releasing the energy into the spark plug in such a
way as to produce a high voltage across the spark gap, causing it to arc and thereby
ignite the fuel-air mixture in the combustion chamber.  The circuit including the
spark coil (transformer) and condensor is first connected to a voltage source
through a small resistance so that a current builds up in the primary winding of the
coil.  Then the circuit is disconnected from the voltage source.  Up to the time the
spark gap arcs the circuit can be analyzed by linear circuit analysis.  Let the circuit
be represented by the model below.  Write and solve a system of two differential
equations for the capacitor voltage and the transformer primary current.  If the
spark gap arcs at 50 kV, how long after the switching occurs does the arc occur?

(Assume the transformer windings are completely coupled, M = Lp Ls .)
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Spark
Gap

R  = 1.5 Ω1 R  = 10 kΩ2

V  = 12 VB
L  = 40 HC = 0.5 µF

t = 0

i  (t)si  (t)p

v  (t)C

+

-
v  (t)sg

+

-
sL  = 10 mHp

M

25. An aluminum block is heated to a temperature of 100 °C.  It is then dropped into a
flowing stream of water which is held at a constant temperature of 10°C.  After 1
minute the temperature of the block is 60°C.  (Aluminum is such a good heat
conductor that its temperature is essentially uniform throughout its volume during
the cooling process.) Assuming that the rate of cooling is proportional to the
temperature difference between the block and the water, find the time required for
the block to reach a temperature of 15°C.

26. A well-stirred vat has been fed for a long time by two streams of liquid, fresh
water at 0.2 cubic meters per second and concentrated blue dye at 0.1 cubic meter
per second.  The vat contains 10 cubic meters of this mixture and the mixture is
being drawn from the vat at a rate of 0.3 cubic meters per second to maintain the
volume.  The blue dye is suddenly changed to red dye at the same flow rate.  At
what time after the switch does the mixture drawn from the vat contain a ratio of
red to blue dye of 99:1?


