DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE UNIVERSITY OF TENNESSEE - KNOXVILLE

COSC 494/594 Special Topic: Bioinformatics Computing Fall 2018 Syllabus

Time and Location: Tuesday & Thursday 12:40 pm-1:55 pm, Min Kao 419

Instructor:

- Dr. Scott Emrich
 - o Office: 608 Min Kao; 974-3891; semrich@utk.edu;
 - o Tentative office hours: Mon 2:00pm-3:00pm, after class and by appointment
 - o If my office door is open, you are welcome to come in and ask questions.

Course Webpage: http://web.eecs.utk.edu/~semrich/bcfall18/

Short Course Description:

• Broad overview of bioinformatics with a substantial problem-solving component. Topics include: generative models for sequences, pairwise sequence alignment, basic methods in molecular phylogeny and evolution, *ab initio* gene prediction, whole genome comparisons, genome assembly and analysis.

Course Outcomes: At the end of the course, you will be able to answer, "What is bioinformatics?" and "What does computer science really have to offer biologists?" Specifically, you will be able to:

- 1. Define computational genomics and phylogenetics concepts. Assessed in exams.
- 2. Apply common bioinformatics tools and techniques effectively. Assessed in exams and assignments.
- 3. Implement basic algorithms such as sequence alignment. Assessed in exams and programming assignments.
- 4. Perform independent genome comparisons and assemblies using gained knowledge. Assessed in assignments.
- 5. Evaluate on your own the promise and challenges for computing on biological datasets. Assessed in the final project.

Ideal prerequisites:

CS340 for CS students, at least one semester of programming for non-EECS students.

Textbook: Cristianini and Hahn, *Introduction to Computational Genomics*.

Additional material will be made available as needed throughout the semester.

Schedule of Major Topics and Exams:

1.	DNA, genes and the genome	(8/23)
2.	Sequence statistics	(8/28)
3.	Sequence alignment	(8/30-9/6)
4.	Variation and natural selection	(9/11)
5.	Hidden Markov Models	(9/13-9/20)
6.	Ab initio gene finding	(9/25)
7.	Whole genome comparisons	(10/2-10/11)
8.	Midterm exam	(10/9 in class)
9.	Genome assembly and validation	(10/18-10/25)
10.	Phylogenetic analysis	(10/30-11/13)
11.	Special topics	(throughout)
12.	Project presentations	(12/4 in class)
13.	Final exam	(TBD)

Grading: I will neither give an extension nor grade late work. You will have one of two alternatives. By default, the lowest homework grade greater than an 84% (B; see below) will be dropped before computing final grades. If the grade is below and/or by choice, students can alternatively submit one updated assignment for re-grading by 11/28. The revised grade will be used for final grading.

Final grades will be computed from a weighted sum of points as follows:

45%: homework (including programming and written answers submitted)

25%: final project

20%: midterm exam (Tuesday, October 9th)

10%: class participation

Course percentages will be translated into letter grades as follows: A: 94% and up; A: 91-94-%; B+: 88-91-%; B: 84-88-%; B-: 81-84-%; C+: 78-81-%; C: 74-78-%; C-: 71-74-%; D: 64-71-%; F: 0-64-%.

Absences will only be excused in accordance with University policy.

Project: A final project involving teams of students will be due at the end of the semester. Teams must consist of two to four students (solo projects won't be allowed).

ADA statement: If you need an accommodation based on a disability can contact Dr. Emrich privately. Full accommodation will be made once approved.

Academic Code of Honor: Any instance of academic dishonesty will not be tolerated. Because I want you to study and discuss course-related work with classmates, but will require you to submit independent assignments/programs, please refer to this document I co-wrote at ND for guidance: http://cse.nd.edu/undergraduates/courses/honor-code. I intend to use the "default" table listed this semester. In short, all graded work should go from your head to your fingers to submission; no copying of solutions (group or online).