
STL::sort and Shellsort

qsort

• qsort is a C-style QuickSort implementation that is ignostic about data and
uses a user supplied function

• Prototype is:
• void qsort (void* base, size_t num, size_t width, int compareFunc(const void *, const

void *)

• You have two options for Project #2:
• Add in two C-style comparison functions, one for strings and one of numbers that

look like above
• Do pointer magic (see Piazza) to convert the C++ style ones into C style
• Purpose: to compare STL and more C-like sorting empirically

http://www.anyexample.com/programming/c/qsort__sorting_array_of_strings__integers_and_structs.xml

Sorting example from same ref

C++ standard as a guide

• The standard for C++ states that sorting should be O(n log n)

• Caveats:
• Stability matters so merge sort and/or a linked list implementation (Project 2)

of quick sort may be in play

• Most implementations use something called “intro-sort,” which is a hybrid
between Quick sort and Heap Sort (spoiler for next week)

• Std::stable_sort exists to guarantee stability, list::sort exists to sort lists in the
STL (sorry, can’t use it for Project 2)

One more thing on Quick sort

• A question asked at the end of last class was, “Dr. Scott, what if we
are unlucky and the first element is the minimum relative to the list?”

• There are two solutions:
• Dr. Plank takes the median of the first, middle, and last number. Does better

and is closest to STL::sort since the median is “in place”

• It is also possible to shuffle the numbers in O(n) time to make the worst case
for QuickSort, which is O(n^2), unlikely. Fisher-Yate’s that is also known as
Knuth’s shuffle is the simplest thing to implement

List::sort

• Actually uses merge sort since merging is pretty easy in a linked list;
you just maintain two pointers (vs. indices), a ”front” pointer, and
move nodes around to put each subproblem in order

• Also relatively low overhead in most implementations

Merge pseudo code

link merge (link a, link b) {
• Node head;
• Link c = &head; // link is a pointer, get address of node

• While (a != null) && (b != NULL). // merge until one list is empty
• if less (a->item, b-> item)

• {c->next = a; c = a; a = a->next;}
• else

• {c->next = a; c = a; a = a->next;}

• c->next = (a==NULL) ? b : a; // tack on the remaining list onto new list c

• Return head.next;
}

Bubble sort
alternative

https://www.geeksforgeeks.org/bubble-sort-on-
doubly-linked-list/

Stability

• A sorting algorithm is considered stable if it maintains the relative
order of equivalent elements

• For example, consider this array:
• 4 61 62 3 7

• A stable sort would guarantee 61 comes before 62

Why does stability matter?

• There are a few times when you want to preserve order. The most
obvious is sorting on multiple factors (Last Name, First Name)

• In general, we have two options for multi-factor sorting
• Use a stable sorting method (see reading assignment)
• Use a custom comparison function, similar to the current Project #2

Example

• Josh N.
• Josh A.
• Josh H.
• Josh B.
• Andrew A.
• Andrew B.
• Alex T.
• Alex S.
• Alex L.

Shell sort

• Algorithm published in 1959 by Shell (thus Shell’s sort)

• Key insight is to divide the list into subsets s.t. more distant elements
are compared and swapped if necessary

• The distances are reduced per iteration, then insertion sort is run to
make sure everything is sorted

Example:
Stage 1

https://www.tutorialspoint.com/data_structures_algorithms/shell_sort_algorithm.htm

Example:
Stage 2

14. 10. 27. 19. 35. 33. 42. 44

https://www.tutorialspoint.com/data_structures_algorithms/shell_sort_algorithm.htm

Psuedo-code

• Gap = choseInitialGap(); // usually n / 2 per Shell

• While (gap > 0) {
• For (i = 0; i < gap; i++)

Insertion sort subsequences starting at I, skipping every gap elements
• Gap = chooseNextGap (gap);

}

Overview (using dance! And no dance..)

• https://www.youtube.com/watch?v=CmPA7zE8mx0

• https://www.toptal.com/developers/sorting-algorithms/shell-sort

https://www.youtube.com/watch?v=CmPA7zE8mx0
https://www.toptal.com/developers/sorting-algorithms/shell-sort

Big picture/take home re: shell sort

• Complexity is hard to analyze, and depends on gap, but in general
• Average case: O(n^1.25)
• First known algorithm to be faster than O(n^2), our example is O(n^1.5)
• Although best case is same as insertion sort (O(n)) in practice usually worse

than merge or quick sort

• The basic idea is the final insertion sort will occur on data with fewer
large scale inversions, which means smaller distances in the final step

Hybrid sorting methods

• There usually is a trade off between efficiency of divide and conquer
(i.e., good theoretical and actual performance) and using the function
stack for recursion

• In Dr. Plank’s notes, his Quick Sort implementation uses insertion sort
with 115 or fewer elements for these advantages:
• Best case is O(n) if already sorted
• Easy to implement

• Any other algorithm can be used, though. Some STL implementations
use introsort

Big picture thoughts

• In practice, median of 3 quicksort is the best (see Plank’s notes);
however, an adversary can derive a example when it does not too
well

• Worst case scenario is O(n^2), just like other sorts

• Solution: bound the size and use heapsort on subproblems
• 1/200th the time on 100,000 elements designed to thwart median of 3

Psuedocode form Wikipedia

