News: Allergy free cats go on sale in U.S.(October 2006)

- ALLERCA GD kitten at 12 weeks of age
- Complete and updated vaccinations
- Mandatory spaying or neutering
- Microchip Identifier implant
- Mealthy and socialized

http://www.allerca.com

\$5950 as of today
Booked for at least 12m months

Expedited delivery available

Where is the computing?

- "sophisticated bioinformatics" was used.
- A glycoprotein, Fel d 1, is the allergan.
- Sequence Fel d 1 gene from multiple cats and study naturally occurring divergences.
 - comparative genomics, multiple sequence alignment
- Target the divergences that could potentially alter structure of Fel d 1 protein.
 - → sequence-structure relationship, protein threading.
- Carry out selective breeding to create the GD cat.

Background

§ DNA

 Computationally, a string over alphabet {A,C,G,T}

§ Genome

Collection of all DNA in a cell

§ Gene

 Encodes the recipe for producing proteins

Protein

A sequence of amino acids

Source: http://rex.nci.nih.gov/behindthenews/ugt/05ugt/ugt05.htm

Some challenges in Computational Biology

- Compare DNA sequences and proteins sequences for similarity.
- 2. Study the evolution of sequences and species.
- 3. Obtain the genome of an organism.
- Identify and annotate genes.
- 5. Find the sequences, three dimensional structures, and functions of proteins.
- 6. Find sequences of proteins that have desired three dimensional structures.

How to Compare Two Sequences?

Problem:

– Given two sequences s_1 and s_2 over a fixed alphabet Σ , what is the set of variations that best describes the genetic transformation from s_1 to s_2 (or equivalently, from s_2 to s_1)?

Combinatorial Optimality

- Based on either maximizing an *alignment* score or minimizing *edit* distance
- Standard dynamic programming techniques

Probabilistic Optimality

- Based on finding a most *probable* set of changes in aligning two sequences
- Hidden-Markov Model (HMM) techniques

Sequence Comparison Caveats

Magenta regions are structurally equivalent with enterotoxin (top left).

Comparative Genomics

Health or Disease?

DNA Sequence

Person 1

AAATTT

Normal protein

Person 2

AATTTT

Some DNA variations have no negative effects

Low or nonfunctioning protein

Person 3

AACTTT

Other variations lead to

disease (e.g., sickle cell) or increased susceptibility to disease (e.g., lung cancer)

B73/Mo17-derived hybrids are widely grown; B73 genome has been sequenced.

Map from Genographic project

Fig. 6 Four possible scenarios of genetic mixture involving Neandertals

R. E. Green et al., Science 328, 710-722 (2010)

Sequence Alignment

Today

- We'll discuss a simple but highly used Dynamic Programming solution to a biological problem
- Arguably one of the most important algorithms in bioinformatics; over 40 years old.
- The ultimate goal of alignment is to describe sequence similarity, or how closely two sequences match each other.
 - Can be a score (number)
 - Can also be an "alignment" (visual)

Applications

- Prediction on function
 - Commonalities among sequences can imply similar functions
- Database searching (BLAST)
 - Find interesting genes in a new genome
- Sequence divergence
 - Look at evolutionary relationships
- Sequence assembly
 - Making a big sequence from a bunch of small ones

American YOUR AMERICAN GUT SAMPLE

MICHAEL POLLAN

What's in your American Gut sample?

Your most abundant microbes:

Taxonomy	Sample
Genus Prevotella	24.9%
Family Ruminococcaceae	13.4%
Family Lachnospiraceae	10.1%
Genus Bacteroides	10.0%

Your most enriched microbes:

Taxonomy	Sample	Population	Fold
Genus Clostridium	2.5%	0.3%	7x
Genus Finegoldia	0.7%	0.0%	17x
Genus Prevotella	24.9%	2.6%	9x
Genus Collinsella	0.9%	0.1%	8x
	Genus Clostridium Genus Finegoldia Genus Prevotella	Genus Clostridium 2.5% Genus Finegoldia 0.7% Genus Prevotella 24.9%	Genus Clostridium2.5%0.3%Genus Finegoldia0.7%0.0%Genus Prevotella24.9%2.6%

This sample included the follow rare taxa: Genus Varibaculum, Genus Neisseria, Genus Campylobacter, Order ML615J-28

Alignment overview

- Computationally, naïve alignments grow exponentially with *n* : not good
 - There are 10^{17} alignments for two length 30 sequences.
- Luckily, a tried and true method for solving similar problems (we'll provide an overview today) comes to the rescue.
- First efficient algorithm published in 1970 by Needleman and Wunch, improved by Smith and Waterman in 1981.

Global alignment

• Also called a pairwise alignment.

• Intuitive goal: related sequences will share many (most?) characters. To maximize this we introduce gaps represented by "-"

Two simple rules

• Rule #1:

A gap must be aligned to a nongap, i.e., "-" can not align to "-"

• Rule #2:

To distinguish good alignment from not so good ones,
 we introduce a scoring function E. Some functions have
 biological meaning, some are arbitrary.

• Consequence #1:

 Alignment length can be no longer than sum of two sequences!

Scoring functions

Here is a basic scoring function that rewards
 1 for a match and -1 for a mismatch gap

$$E(-,a) = E(a,-) = E(a,b) = -1$$
 $\forall a \neq b$
 $E(a,b) = 1$ $\forall a = b$

• Can also be represented as a substitution matrix.

Measuring similarity

Score: A measure of alignment quality

Total = 33

Scored as E(C,C) E(A,-), E(T,T), E(-,C), etc.

Various types

Example from text

- How do we align these proteins:
 - VIVALASVEGAS
 - VIVADAVIS

In class example

S: CATCAC

T: CTCCAGC

$$E(-,a) = E(a,-) = E(a,b) = -1$$
 $\forall a \neq b$
 $E(a,b) = 1$ $\forall a = b$

Global alignment

- Dynamic programming (DP) will save the day!
- DP is a general technique used when a large problem can be broken into smaller, easier problems like this.
- To solve sequence alignment, we will fix two substrings and find the best way to add the next character from at least one string.

Requirements

- We will need four things to compute a global alignment:
 - 1. Substitution matrix (parameters)
 - 2. Recurrence relation
 - 3. Filling up a table
 - 4. Traceback

Basic intuition

• Suppose we have an optimum alignment of size L. Is the following true?

- $A^* = A^*(s_1 \dots s_i, t_1 \dots t_j) + A^*(s_{i+1} \dots s_n, t_{j+1} \dots t_m)$ - Where |s| = n and |t| = m
- If so, what would happen if i = n 1 and j = m 1?

Visualization

Pairwise Global Alignment

T[i,j] = Score of optimally aligning first i bases of s with first j bases of t.

$$T[i,j] = \max \begin{cases} T[i-1,j-1] + score(s[i],t[j]) \\ T[i-1,j] + g \\ T[i,j-1] + g \end{cases}$$

	λ	C	T	C	G	C	A	G	C
λ	0	- 5	-10	- 15	-20	- 25	-30	- 35	-40
C	- 5	10	5						
A	-10								
T	- 15								
T	-20								
C	- 25								
A	-30								
C	- 35								

+10 for match, -2 for mismatch, -5 for space (rowwise)

	λ	C	T	C	G	C	A	G	C
λ	0	-5	-10	-15	-20	-25	-30	-35	-40
C	-5	10	5	0	-5	-10	-15	-20	-25
A	-10	5	8	3	-2	-7	0	-5	-10
T	-15	0	15	10	* 5	0	-5	-2	-7
T	-20	-5	10 *	13	8	3	-2	-7	-4
C	-25	-10	5	20	15	18	13	8	3
A	-30	-15	0	15	18	13	28	-23	18
C	-35	-20	-5	10	13	28	23	26	33

Traceback yields both optimal alignments in this example

Some Results

- Most pairwise sequence alignment problems can be solved in O(mn) time. Some speedups exist, most notably the Four Russians technique.
- Space requirement can be reduced to O(m+n), while keeping run-time fixed [Myers88].
- Two highly similar sequences can be aligned in O(dn) time, where d is a measure of the distance between the sequences [Landau86].