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Minimum Dominating Set (MDS)

• Given a graph G=(V,E) a dominating set (DS) is a set 
D ⊆ V s.t. for all vertices v ⊆ V, v is either in D or 
adjacent to at least one vertex in D.

• An MDS is a DS of minimum cardinality.
• The size of an MDS is known as the dominating 

number.  
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Nodes 1 and 3 in red form a minimum dominating set.



Determining Critical, Redundant and 
Intermittent Vertices
• Must solve MDS N times.
• To determine critical: for each vertex v in MDS, 

exclude from being in solution and resolve. If MDS 
size increases, v is critical.

• To determine redundant: for each vertex v not in 
MDS, force in solution and resolve. I MDS size 
increases, v is redundant.

• Intermittent are those vertices that are neither.
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Motivation
• Determining critical, intermittent, and redundant 

vertices found to be important for studying biological 
networks.

• Critical vertices are in every solution of MDS.
• Intermittent vertices are in one or more, but not all 

solutions of MDS.
• Redundant vertices are in no solution of MDS.
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Direct Search-Tree Algorithm
• Preprocess all degree one vertices.
• Backtracking algorithm of Fomin et al.
• Two reduction rules:

• Closed-neighborhood subset rule
• Unique neighbor rule.

• Vertex selection
• Vertex with most uncovered neighbors.
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ILP Formulation of MDS 
• For each vertex vi∈V create a binary variable xi 
• For each closed neighborhood N[vi] create the 

constraint: ∑j∈N[v] xj≥1 

min ∑i∈V xi

∑j∈N[v] xj≥1 ∀i ∈ V

Xi∈{0,1} ∀i ∈ V
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Direct Graph Method vs. ILP

An Experimental study
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Testbed
• Erdos-Renyi random graphs with 100 vertices and 

varying density.
• We use a variety of graphs from real-world datasets. 
• Useful to test on different graph topologies. 
• Transcriptomic network, protein-protein interaction 

network, social networks, food-web network, road 
network and epidemiology network. 
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Testing Environment

• All experiments were performed on a dell laptop with 
an intel core 15-52000U @ 2.20GHz x4 with 8GiB of 
memory.

• ILP formulation implemented using GUROBI 7.5.2
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DS-Min vs. ILP: Random Graphs
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Instances Graph Algorithm 
Outperforms
• Graphs where reduction rules can take advantage.

• Power-law degree distributions.
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DS-Min vs. ILP: Power-Law Graphs
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Instances ILP Outperforms 
• Sparse highly regular graphs

• Road networks, certain epidemiological networks
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DS-Min vs. ILP: Highly regular Graphs 
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Lower Bounds: 2-packing
• A set of vertices P, s.t. the intersection of the closed 

neighborhoods of any two vertices u,v ∈ P is empty.
• Can be thought of an independent set on 2-hop graph.
• 2-packing (2p) is a lower bounds to MDS.
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Lower Bounds: 2-packing
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Toroidal Graphs
• ILP performs significantly better on highly regular graphs.
• Regular graph with degree 4. 
• Constructed as intentionally hard case for graph theoretic 

algorithm.
• Reduction rules do not apply at start. 
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Toroidal Graphs: Timings
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Lower Bounds: LP Relaxation
• The LP relaxation of MDS is also a lower bounds for MDS.
• Unfortunately, 2p ≤ LP-MDS ≤ MDS.
• The LP relaxation is generally a tighter bound.
• Added advantage; if LP relaxation is integral, optimum 

solution is found.
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Lower Bounds: LP vs 2-packing
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Toroidal graphs: LP Relaxation
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Lower Bounds: LP Relaxation
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The Story so Far
• Direct method generally better for power-law graphs.

• Can take advantage of reduction rules.
• ILP generally better for regular graphs.
• Studying “extreme” instances can offer insight into 

algorithmic behavior. 
• Studying the techniques used by one implementation 

can aid in the design of the other.
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Future Work: Symmetry
• ILP is able to exploit symmetry.
• Allows branching on orbits. (a set of vertices that can be 

swapped preserving isomorphism)

25



Future Work: Choosing Lower Bounds

• Exploiting knowledge of graph topology to choose lower bound 
during search.

• When is 2-packing sufficient?
• When is LP relaxation worth the time cost?
• Can we employ machine learning methods to determine this 

choice?
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Future Work: When to Check for Connected 
Components
• MDS deconstructs a graph when branching.
• Graph can become disconnected during search.
• Each connected component can be solved independently.
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Open Question

• When to use kernalization via MDS’s fixed 
parameter tractable (FPT) dual dominated set 
(also known as nonblocker)?

• Analogous to vertex cover for clique.
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Questions?
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