Light Emitting Diodes (LED)

We have seen that if all the loss mechanisms are considered, the light extraction efficiency comes out to be very low (1 - 2 %). Following steps are taken to reduce photon losses (or improve photon extraction):

(1) To recover part of photons traveling towards the bottom contact.

There are various ways to achieve this. One may be to have a reflecting contact. This invariably results in poor electrical characteristics; due to increased ohmic voltage drop (contact resistance x current)

Another way is to incorporate a layer, shown dotted in Fig. 1, having a lower index of refraction than the layer in which photons are generated.

 $n_{r1} < n_r$

This would result in reflection: [For normal incidence]

$$R = \left[\frac{n_r - n_{rI}}{n_r + n_{rI}}\right]^2$$

So, $\frac{1}{2}$ I₀R will be reflected up.

[For oblique incidence, relation is different]

(2) Increase critical angle θ_c to improve T [T = 1 - Cos θ_c]

The dome shape helps in reducing total internal reflections at the dome/air boundary.

(3) Reduce reflections from the *semiconductor/air* interface.

Using $n_{air} = 1$,

$$T = \frac{4n_r}{(n_r + 1)^2}$$

same as in notes.

Τ

Solution: Insert or deposit an antireflection (AR) coating.

Fig. 3(b)

For the structure of Fig. 3(b),

$$R = \frac{(n_r n_{r_3} - n_{r_2}^2)^2}{(n_r n_{r_3} + n_{r_2}^2)^2} = Reflection \ coefficient$$

- for normal incidence.
$$T = -\frac{4 n_r n_{r_3} n_{r_2}^2}{(n_r n_{r_3} + n_{r_2}^2)^2}$$

Fig. 3(a)

R = 0, if $n_r n_{r3} = n_{r2}^{2}$

$$or, n_{r2} = \sqrt{n_r n_{r3}}$$

In addition, there is a phase condition:

$$n_{r2} * t = \frac{\lambda}{4} (2l - 1)$$
 $l = 1, 2, 3, \dots (an integer)$

That is, the thickness of the AR coating is multiple of $\lambda/4 * n_{r^{2^{+}}}$. Commonly used materials for antireflection coating: SiO₂, SiO, TiO₂, ZrO₂, SiO₃N₄ $n_{r^{2}} \approx 1.8 - 1.9$

Finally, incorporating all the above improvements, we get,

A typical LED chip on a TO 5 type header

(4) Heterojunctions: (*nAlGaAs - pGaAs*)

If the n-region is made using a wider energy gap material, this would result in small absorption in the window (or n-) region.

$$I(d) = I_0 e^{-\alpha d}$$

$$\alpha$$
]_{wider gap} < α]_{narrow gap} , for a given $hv \approx E_g$

Also η_{inj} is higher for heterojunctions.

Fig. 4

Fig. 14.7. LED geometries to increase the light extraction or optical efficiency. The effectiveness of the various geometries is listed in Table 14.1. (After Carr. Reprinted with permission from *Infrared Physics*, 6, 1966; 0 1966 Pergamon Press.)

.

	Radiant Flux	Maximum Radiant Intensity	Average Radiant Intensity
Geometry	P	$ \begin{array}{c} J(0)\\ \theta = 0 \end{array} $	⟨ʃ(0)⟩ ø = 26°
The plane diode area emission lemisphere Weierstrasse sphere Truncated ellipsoid	0.013 0.34 0.34 0.25 0.20	0.0042 0.054 1.4 9.8 0.063	0.0039 0.054 0.52 0.39 0.059
Fruncated cone Paraboloid source $R_j/F_p = 0.1$	0.34 0.34	0.84 3.3	0.52 0.52

(After Carr; reprinted from Infrared Physics, 1966, V. 6)

Ref.	p. 155	2.16.3.1	Gallium indium	arsenide	phosphide	(Ga,In _{1-x} As _y	$P_{1-\gamma}$	
------	--------	----------	----------------	----------	-----------	---------------------------------------	----------------	--

- 84I Inoshita, T.: J. Appl. Phys. 55 (1984) 2056.
 84K Kobayashi, N., Fukui, T.: J. Cryst. Growth 67 (1984) 513.
 - 84L Lai, S.T., Klein, M.V.: Phys. Rev. B 29 (1984) 3217.
 - 84M Murawala, P.A.: Phys. Rev. B 29 (1984) 4807.
 - 84R Radojewska, E.B., Bryskiewicz, T., Jedral, L., Brzezinski, J., Lewandow, ski, W.: Appl. Phys. Lett. 45 (1984) 988.
 - 84W Wang, P.J., Wessels, B.W.: Appl. Phys. Lett. 44 (1984) 766.
 - 85C Cohen, R.M., Cherng, M.J., Benner, R.E., Stringfellow, G.B.: J. Appl. Phys. 57 (1985) 4817.
 - 85T Takeda, K., Matsumoto, N., Taguchi, A., Taki, H., Ohta, E., Sakata, M.: Phys. Rev. B 32 (1985) 1101.

			· · · · · · · · · · · · · · · · · · ·	······
Physical	Numerical	Experimental	Experimental method,	Ref.
property	value	conditions	remarks	

2.16.3 Quaternary alloys of the type $III_x - III_{1-x} - V_y - V_{1-y}$

Quaternary alloys provide the possibility to grow epitaxial layers with a broad range of energy gaps lattice matched to a suitable substrate.

The condition for lattice matching can easily be derived from the interpolation scheme for the determination of a material parameter P(x, y) for an alloy $A_x B_{1-x} C_y D_{1-y}$ from the same parameters of the four constituents:

P(x, y) = (1 - x) y P(BC) + (1 - x) (1 - y) P(BD) + x y P(AC) + x (1 - y) P(AD).

For lattice matching on substrate BD (x = y = 0) the condition a(x, y) = a(BD) leads to

$$x = \frac{[a (BC) - a (BD)] y}{[a (BD) - a (AD)] - [a (BC) + a (AD) - a (BD) - a (AC)] y}$$

or, in a linear approximation to this formula – exact at y = 0 and y = 1:

 $\mathbf{x}/\mathbf{y} = [a(\mathbf{B}\mathbf{C}) - a(\mathbf{B}\mathbf{D})]/[a(\mathbf{B}\mathbf{C}) - a(\mathbf{A}\mathbf{C})].$

The main interest in quaternary III-V alloys stems from the possible applications in micro- and optoelectronic devices. Thus most of the data in the following sections refer to quaternary alloys lattice matched to GaSb, InP and GaAs (see Fig. 1 in section 2.16.1). From the huge amount of papers on the characterization of quaternary layers and on device applications only the most important intrinsic data will be presented here.

The growth conditions are affected by the occurrence of miscibility gaps. We refer to basic discussions of these phenomena to [82S1, 83S1, 83S2].

Several types of quaternary alloys are possible:

(a) III-III-V-V alloys. These materials will be discussed in the following subsections.

(b) III-III-V alloys. Several systems will be presented in section 2.16.4.

(c) III-V-V-V alloys. Here only one system seems to be of interest for applications: $InAs_{1-x-y}Sb_xP_y$. We refer for this system to [80B, 81E. 82G1, 84A1].

Not much has been done in the field of *quintarnary alloys*. An example for such material is $(Al_xGa_{1-x})_{1-x}In_xP_yAs_{1-y}$ on GaAs [84M].

2.16.3.1 Gallium indium arsenide phosphide $(Ga_xIn_{1-x}As_yP_{1-y})$

As shown in Fig. 1 of section 2.16.1 alloys of this system can be lattice matched on InP (E_g range: 0.73...1.35 eV), GaAs (E_g range: 1.42...1.90 eV) and ZnSe (slightly lower range). The matching conditions according to the formula above are ($0 \le y \le 1$):

х	0.1894 y/(0.4184 - 0.013 y)	on InP substrate
	≈ 0.47 y	
	(1.00 + y)/2.08	on GaAs substrate
	(1.06 + y)/2.06	on ZnSe substrate.

Fig. p. 343

2.16.3.1 Gallium indium arsenide phosphide $(Ga_xIn_{1-x}As_yP_{1-y})$ [Ref. p. 155 Figs. p. 362

1					
	Physical	Numerical	Experimental	Experimental method,	Ref.
	property	value	conditions	remarks	

Most data have been obtained for InP lattice matched samples. All data in the following tables and figures refer - if not stated otherwise - to InP lattice matched material.

The system has been reviewed in [82P1]. In [82A1] all relevant material parameters have been calculated from the corresponding parameters of the four binary constituents.

Electronic properties

direct energy gap (in eV):

 $E_{g. dir}(x, y) \simeq 1.35 + 0.668 \text{ x} - 1.068 \text{ y} + 0.758 \text{ x}^2 + 0.078 \text{ y}^2 - 0.069 \text{ x} \text{ y} - 0.322 \text{ x}^2 \text{ y} + 0.03 \text{ x} \text{ y}^2$ 84K1

from literature data for the constituents and interpolation formulas; for lattice match to InP this formula reduces to

$E_{\mathbf{g},\mathrm{dir}}(\mathbf{y})$	1.35 - 0.738 y + 0.138 y ²	RT	electroreflectance	80 Y
	1.350 - 0.883 y + 0.250 y ²	RT	electroreflectance	80P
	1.35 - 0.775 y + 0.149 y ²	298 K	calculated, fitting photo- luminescence and electro- reflectance measurements, Fig. 1 a [82P2]	82P2
	1.425 - 0.7668 y + 0.149 y ²	4.2 K	calculated, fitting ab- sorption and transmission measurements, Fig. 1 b [82P2]	

The calculated compositional variation of $E_{g,dir}$ for GaAs and ZnSe lattice matched material is shown in Fig. 2 [82A1].

Theoretical approaches to $E_{g}(y)$: [81P2, 83P2].

bowing parameters for band gaps at L and X (in eV):

$c(\Gamma - L)$	0.10(5)	L-conduction band	84K2
$c(\Gamma - X)$	0.21 (7)	X-conduction band	
	()	from synchrotron radiation	
		reflection spectroscopy	

higher interband	transition energies (in eV):					
E ₁	3.11 + 0.034 x - 0.885 y +	$3.11 + 0.034 \text{ x} - 0.885 \text{ y} + 0.516 \text{ x}^2 + 0.275 \text{ y}^2 - 0.187 \text{ x} \text{ y} + 0.017 \text{ x}^2 \text{ y}$				
at RT, from fit	ting of literature data: for Inl	P lattice match	ed material this formula reduces to			
<i>E</i> ₁ (y)	$3.11 - 0.87 y + 0.30 y^{2} + 0.007 y^{3}$	RT		80L		
	3.136 - 0.788 y + 0.222 y ²	RT		80P		
	3.14 - 0.739 y + 0.149 y ²	295 K	calculated, fitting electro- reflectance and ellipso- metric data, Fig. 3 [82P2]	82P2		
	3.163(13) - 0.590(16) y + 0.33(5) y ²	RT	ellipsometry	82K2		
<i>E</i> ₂ (y)	5.04 - 0.309 y + 0.149 y ²	295 K	see also Fig. 4 [80L]	82P2		
	4.75 - 0.569 y + 0.149 y ²	295 K		81P1		
<i>E</i> ₀ (y)	4.72(1) - 0.31(2) y -0.01(5) y ²	RT	ellipsometry	82K2		

For further interband transition energies, see Fig. 4 [80L].

Landolt-Börnstein New Series III/22a

Physical property	Numerical value	Experimental conditions	Experimental method, remarks	Ref.
spin-orbit splitting	energies (in eV):			
⊿ ₀ (y)	0.119 + 0.300 y	RT	electroreflectance,	80P
⊿₁ (y)	$-0.107 y^{2}$ 0.145 + 0.173 y $-0.064 y^{2}$		see also Fig. 1 [82P2] see also Fig. 5 [82P2]	80P
	0.133 (5) + 0.124 (7) y - 0.07 (2) y^2	RT	ellipsometry	82K2
effective masses (i	n units of m_0):			
$m_{n}(x, y)$	0.08 - 0.116 x + 0.026 y -	0.059 x y + (0.064 -	$0.02 \text{ x}) \text{ y}^2 + (0.06 + 0.032 \text{ y}) \text{ x}^2$	80R
interpolation form	nula; relations for InP latt	ice matched materia	lare	
$m_{n}(y)$	0.077 - 0.050 y + 0.014 y ²	RT	Shubnikov – de Haas effect	80P
	0.080 – 0.039 y		see also Fig. 6 [82P2]	80N
m _{p.1} : Fig. 7 [82P: m _{p.b} , m _{so} : Fig. 8	2], also [81H] [82A1].			
electron g-factor:				000
<i>B</i> c	$1.35 - 2.47 \text{ y} - 2.26 \text{ y}^2$	RT	electroreflectance	80P
Valence band parallated for the full	rameters, hole-phonon cou x, y range in [84T].	ipling constants and	alloy scattering potentials have	been calcu-
Lattice properties				
The system of Ir see e.g. [82P1, 83	nP lattice matched alloys Q, 84L], for phase diagram	shows a miscibility s and related proble	gap (Fig. 9 [84K1]). For growth ms, see [82G2, 83B, 84K1].	n problems,
lattice parameter	(in Å):			
<i>a</i> (x, y)	5.8688 - 0.4176 x + 0.1896 y + 0.0125 x y	/	linear interpolation from lattice parameters of four constituents	82A1
thermal expansion	1: Fig. 10 [82A1].			
density (in g cm ⁻	³):			
d	5.477 – 0.712 y			82A1
hardness anisotro	py: [84W1].			
Experimental da temperature rang	ta on heat capacity and t ge 4 K…300 K have been re	hermodynamic func ported in [82S2].	tions for the $(GaAs)_{x}(InP)_{1-x}$ sy	stem in the
phonon wavenum	bers:			
for InP lattice ma for GaAs lattice See also [86S] for	atched material: Fig. 11 [8: matched material: Fig. 12 r Raman scattering data.	2L, 84I], [84I].		
elastic moduli: F anisotropy factor	ig. 13 [82A1]. For respect r as well as sound velocitie	ive figures of Youn s, see [82A1].	gʻs modulus, bulk modulus, Poi	sson's ratio,
Transport proper	ties			
Mobility data h show two typica	ave been reported in ma I diagrams: Fig. 14 [82H] f	ny papers on the c or the electron mobi	haracterization of epitaxial laye lity and Fig. 15 [82H] for the hole	rs. We only e mobility.

Ref. p. 155] 2.16.3.1 Gallium indium arsenide phosphide $(Ga_x In_{1-x} As_y P_{1-y})$ Figs. p. 362 ff.

Figs. p. 343, 365 f. 2.16.3.2 $Ga_x In_{1-x} As_y Sb_{1-y}$; 2.16.3.3 $Al_x Ga_{1-x} As_y Sb_{1-y}$

Physical property	Numerical value	Experimental conditions	Experimental method, remarks	Ref.
Auger recomb	ination in InP lattice ma	tched materials:	-	
effective Augo	er coefficients in the forr	$\operatorname{nula} \tau^{-1} = A n^2 + B n \left(A \operatorname{in} \right)$	$10^{-29} \text{ cm}^6 \text{ s}^{-1}$, <i>B</i> in 10^{-10} cm^{-1}	3 s ⁻¹)
A	1.5	x = 0.27	for Auger recombination,	84W2
	7.5	0.40	see also [82M, 85S]	
	9.8	0.47		•
В	1.2	0.27		
-	1.0	0.40		

Optical properties

refractive index:

154

Fig. 17 [82B2] for the range $0.3 \cdots 1.1 \ \mu m$; for $\lambda = 1.15$, 1.30 and 1.55 μm , see [84B2].

dielectric constant:

e (0)	12.40 + 1.5 y	for photon energies up 82A2	
$\epsilon(\infty)$ 9.55 + 2.2 y	to E_{g} , see Fig. 18 [82A2];		
	calculated refractive		
	indices in this range:		
		[82A2, 83J]	

For electrooptic and photoelastic effects, see [83A1, 84A1, 84A2].

2.16.3.2 Gallium indium arsenide antimonide $(Ga_xIn_{1-x}As_ySb_{1-y})$

This system is shown as shaded area in Fig. 1 of section 2.16.1. It is the only system applicable for the growth of low band gap epitaxial layers on GaSb substrate. In spite of interesting applications for optical sources and detectors in the $2\cdots 4 \mu m$ range only few reliable data on intrinsic properties have been published.

MBE layers (x = 0.75, y = 0.21) with an energy gap of about 0.69 eV have been investigated in [85T]. Various other compositions have been studied in [86C]. LPE growth is possible but meets difficulties by the existence of a miscibility gap (see [85T] and literature cited therein). For experimental and theoretical data on phase diagrams, see e.g. [82G2, 82K1, 83B], for optical and luminescence investigations, see [82B1, 84B1].

2.16.3.3 Aluminum gallium arsenide antimonide $(Al_xGa_{1-x}As_ySb_{1-y})$

This system shows a broad miscibility gap. Epitaxial layer growth is possible

- on GaSb for small amounts of As; by adding small amounts of As the lattice matching of $Al_xGa_{1-x}Sb$ on GaSb can be improved (see Fig. 1 of section 2.16.1)
- on GaAs for small amounts of Sb; layers with y greater than 0.8 have been produced.

See [83P1] for phase diagrams and a literature review on epitaxial layers and optoelectronic applications.

Madelung

Landolt-Börnstein New Series III/22a

2.16.3 Quaternary alloys of the type $III_{y} - III_{1-x} - V_{y} - V_{1-y}$

09

0.6

17 ,e 100

٩,5

04

3月4日 11日 14日

 $Ga_xIn_{1-x}As_yP_{1-y}/InP$

m#.h

m_{sa}

020

0.15

1010

1987

1. 2.

an chanterarte Her Series 111.224

S 11 . .

1."

1.1.1.1

and a set of set

٥ 0.2 0.4 $\{i_i\}_i$ it A 19 Y Fig. 8. Ga, Ir1-, As, P1-, Heavy hole mass and effective mass of the spin orbit split off values hand vs. composition

for InP lattice matched material, calculated with an interpolation scheme [\$2A1].

lef: Semiconductors . Intrinste Proporte of Group IR + D-R, II-VI, d. I THI Congrounds 363

KING TO DA Werlan