The figure is a logic diagram for a binary Full Adder implemented with two XOR (exclusive-OR) gates, two AND gates, and one OR gate. We’ll define these gates early in the course. The shape of a gate tells what kind it is: the two XORs are at the top; the two ANDs and the single OR are at the bottom. Each gate computes a binary-valued function of its two binary inputs. The Full Adder computes the sum of the three input bits A,B,C in binary arithmetic and outputs the answer as sum bit S and carry bit C₀ according to this Truth Table:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th>C₀</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Instructor: Michael Thomason
Class: 9:05-9:55 MWF, Room C206 in the Claxton outpost.
Office Hours: 10:05-11:15 MWF, Room C316 (Often around at other times, but not guaranteed available.)
Labs: Open lab with daily hours TBA; handouts in class with results reported during GTA office hours.
GTA Office Hours TBA.
e-mail: thomason@eecs.utk.edu or thomason@cs.utk.edu

If you send e-mail, recognize its limitations. The volume of e-mail, including SPAM, is very large, so you have to expect delays. Also, e-mail isn’t viable for detailed technical questions and answers: use the office hours or make an appointment on a timely basis.

Course Description

Catalog Description: Standard codes, number systems, base conversions, and computer arithmetic. Boolean algebra, minimization and synthesis techniques for combinational and sequential
logic. Use of VHDL for logic synthesis. Implementation of circuits using SSI, MSI, and LSI components. Includes Level 1 design projects which require lab work.

Required Text: Bound lecture notes for ECE 255 from Graphics Creations.

Topics (expect some real-time tuning and adjustments):

- Intro. to logic design: What’s it about? What’re the goals? What tools are used in this course?
- Boolean Algebra: operations and properties; manipulation of expressions
- Truth Tables; canonical expressions
- Intro. to CAD tools and VHDL as a language for logic design
- Minimization; Karnaugh maps; “don’t cares”; implicants (prime, essential)
- Number systems; binary arithmetic
- Combinational logic modules (adders, multiplexers, encoders and decoders); PLAs
- Sequential logic; cross-coupled gates to make flip-flops; RS, T, D, and JK flip-flops
- Flip-flop arrays (registers, counters)
- Clocked (synchronous) sequential circuits; state diagrams of Mealy and Moore machines
- Asynchronous sequential circuits; timing considerations and hazards \[as time permits\]

For your lab work, we must cover aspects of the Xilinx ISE design software, the Digilent Adept software, and the Digilent BASYS board with its Xilinx Spartan3e FPGA. You are responsible for all assignments: in class, in the lecture notes, in handouts, and in labs.

Prereq and Grading: ECE 255 is an introduction to logic design, not a course intended for people who already have a background in the topic. It is a 4-credit course with a lab.

Your course grade will be based on 500 points as follows. There will be three in-class exams (50 minute, closed book, no calculators or other electronics) for 100 points each. Exams will be spaced about evenly through the semester. There will be 100 points total of graded homework spread over several assignments. Homework to turn in for grading will be handed out in class with a specific due-date and must get grade 0 if late. There will also be lab assignments to be verified by the GTAs by specific due-dates and totalling 100 points. The course letter grade will be based on the percentage (rounded to uint8) of points earned out of the 500 points possible: 90 to 100% A to A-, 80 to 89% B+ to B-, 70 to 79% C+ to C-, 60 to 69% D, < 60% F. There may be a curve downward (like 79% for B-) depending on the class distribution. The breakpoints for + and - will depend on the class distribution. The labs are not optional. Failure to pass every lab must cause you to fail the course regardless of how well you do on the other work.

Students who have a disability that requires accomodation should make an appointment with the Office of Disability Services to discuss specific needs.