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Abstract—A nonlinear least-squares method is presented
for the identification of the induction motor parameters. A
major difficulty with the induction motor is that the rotor
state variables are not available measurements so that the
system identification model cannot be made linear in the
parameters without overparametrizing the model. Previous
work in the literature has avoided this issue by making
simplifying assumptions such as a “slowly varying speed”.
Here, no such simplifying assumptions are made. The problem
is formulated as a nonlinear system identification problem and
uses elimination theory (resultants) to compute the parameter
vector that minimizes the residual error. The only assumption
is that the system be sufficiently excited. The method is suitable
for online operation to continuously update the parameter
values. Experimental results are presented.
Index Terms—Least-Squares Identification, Induction Mo-

tor, Parameter Identification

I. INTRODUCTION

The induction motor parameters are the mutual induc-
tance , the stator inductance , the rotor inductance ,
the stator resistance , the rotor resistance , the inertia
of the rotor , and the load torque . Standard methods
for the estimation of the induction motor parameters include
the locked rotor test, the no-load test, and the standstill
frequency response test. However, these approaches cannot
be used online, that is, during normal operation of the
machine which is a disadvantage as some of the parameters
do vary during operation. For example, field oriented control
requires knowledge of the rotor time constant =
in order to estimate the rotor flux linkages and varies
significantly due to Ohmic heating.
The work presented here is an approach to identifying

the induction motor parameters based on a nonlinear least-
squares approach. As the rotor state variables are not avail-
able measurements, the system identification model cannot
be made linear in the parameters without overparametriz-
ing the model [1][2]. Previous work in the literature has
avoided this issue by making simplifying assumptions such
as a “slowly varying speed”. Specifically, the proposed
method improves upon the linear least-squares approach
formulated in [1][2]. In [1][2] the approach was limited
in that the acceleration was required to be small and that
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an iterative method used to solve for the parameter vector
was not guaranteed to converge nor necessarily produce
the minimum residual error. Here, no such simplifying
assumptions are made. The problem is formulated as a
nonlinear system identification problem and uses elimina-
tion theory (resultants) to compute the parameter vector
that minimizes the residual error with the only assumption
being that the system is sufficiently excited. This method
is suitable for online implementation so that during regular
operation of the machine, the stator currents and voltages
along with the rotor speed can be used to continuously
update the parameters of the machine. Experimental results
are presented to demonstrate the validity of the approach.
A combined parameter identification and velocity estima-

tion problem is discussed in [3][4][5]. In contrast, we do not
consider the velocity estimation problem, as the velocity is
assumed to be known. On the other hand, here the velocity
is allowed to vary and the paper shows how estimates of
the rotor flux linkages can be simultaneously constructed
(for possible use in a field-oriented control drive, such
as [6]). Additionally, the method developed in this paper
provides measures of the errors affecting the parameter
estimates. Such measures are useful for the monitoring of
the estimation procedure itself. Other related work includes
[7], [8] and [9]. For background in various approaches to
machine parameter estimation, there is a recent survey paper
[10] and the book [11].

II. INDUCTION MOTOR MODEL

The work here is based on standard models of induction
machines available in the literature [6]. These models ne-
glect parasitic effects such as hysteresis, eddy currents and
magnetic saturation. The particular model formulation used
here is the state space model of the system given by (cf.
[12][13])
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where = with the position of the rotor, is the
number of pole pairs, are the (two phase equivalent)
stator currents and are the (two phase equivalent)
rotor flux linkages.
As stated in the introduction, the (unknown) parameters

of the model are the five electrical parameters, and
(the stator and rotor resistances), (the mutual in-

ductance), and (the stator and rotor inductances),
and the two mechanical parameters, (the inertia of the
rotor) and (the load torque). The symbols

= = 1
2

= = +
1 1 2

have been used to simplify the expressions. is referred to
as the rotor time constant while is called the total leakage
factor.
This model is then transformed into a coordinate system

attached to the rotor. For example, the current variables are
transformed according to· ¸

=

·
cos( ) sin( )
sin( ) cos( )

¸ · ¸
(2)

The transformation simply projects the vectors in the ( )
frame onto the axes of the moving coordinate frame. An
advantage of this transformation is that the signals in the
moving frame (i.e., the ( ) frame) typically vary slower
than those in the ( ) frame (they vary at the slip frequency
rather than at the stator frequency). At the same time, the
transformation does not depend on any unknown parameter
in contrast to the field-oriented transformation. The
stator voltages and the rotor flux linkages are transformed in
the same manner as the currents resulting in the following
model ([1])

= + + +

(3)

= +

(4)

=
1

(5)

=
1

(6)

= ( ) (7)

III. LINEAR OVERPARAMETRIZED MODEL
Measurements of the stator currents and volt-

ages as well as the position of the rotor are
assumed to be available (velocity may then be recon-
structed from position measurements). However, the rotor
flux linkages are not assumed to be measured.
Standard methods for parameter estimation are based on

equalities where known signals depend linearly on unknown
parameters. However, the induction motor model described
above does not fit in this category unless the rotor flux
linkages are measured. The first step is to eliminate the
fluxes and their derivatives .
The four equations (3), (4), (5), (6) can be used to solve
for , , but one is left without
another independent equation(s) to set up a regressor system
for the identification algorithm. A new set of independent
equations are found by differentiating equations (3) and (4)
to obtain

1
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2

2
+

(8)
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+ + + (9)

Next, equations (3), (4), (5), (6) are solved for ,
and substituted into equations (8) and

(9) to obtain
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The set of equations (10) and (11) may be rewritten in
regressor form as

( ) = ( ) (12)
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where 15 2×15 and 2 are given by

,
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Though the system (12) is linear in the parameters, it is
overparameterized resulting in poor numerical conditioning
if standard least-squares techniques are used. Specifically,

1 = 6 8 2 = 4
2
8 3 = 8 14 5 = 1 8

7 = 4 8 9 = 6
2
8 10 = 4

3
8 11 =

2
8

12 = 6
3
8 13 = 14

3
8 15 = 14

2
8 (13)

so that only the four parameters 4 6 8 14 are
independent. Also, not all five electrical parameters ,
, , and can be retrieved from the ’s. The

four parameters 4 6 8 14 determine only the four
independent parameters , , and by

=
6 4

14
= 8 =

1 + 4
2
8

14 8
=

1

1 + 4
2
8

(14)
As = and = 1 2 ( ), only

and 2 can be obtained, and not ,
and independently. This situation is inherent to the

identification problem when rotor flux linkages are unknown
and is not specific to the method. If the rotor flux linkages
are not measured, machines with different , and
, but identical and 2 will have the same

input/output (i.e., voltage to current and speed) character-
istics. Specifically, the transformation ratio from stator to
rotor cannot be determined unless rotor measurements are
taken. However, machines with different parameters, yet
satisfying the nonlinear relationships (13), will be distin-
guishable. For a related discussion of this issue, see Bellini
et al [14] where parameter identification is performed using
torque-speed and stator current-speed characteristics.

IV. NONLINEAR LEAST-SQUARES
IDENTIFICATION[15][16]

In this section, it is shown how the linear least-squares
method is modified to account for the constraint (13). The
problem is to minimize

2( ) =
X
=1

¯̄̄
( ) ( )

¯̄̄2
= 2 + (15)

subject to the constraints (13). On physical grounds, the
parameters 4 6 8 14 are constrained to

0 for = 4 6 8 14 (16)

Also, based on physical grounds, the squared error 2( )
will be minimized in the interior of this region. Let

2( ) ,
X
=1

¯̄̄
( ) ( )

¯̄̄2
1= 6 8

2= 4
2
8

...

(17)

= 2
¯̄̄

1= 6 8

2= 4
2
8

...

+
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2= 4
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...
where

,
£

4 6 8 14

¤
As just explained, the minimum of (17) must occur in the
interior of the region and therefore at an extremum point.
This then entails solving the four equations

1( ) ,
2( )

4
= 0 (18)

2( ) ,
2( )

6
= 0 (19)

3( ) ,
2( )

8
= 0 (20)

4( ) ,
2( )

14
= 0. (21)
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The partial derivatives in (18)-(21) are rational functions in
the parameters 4 6 8 14. Defining

1( ) , 8 1( ) = 8

2( )

4
(22)

2( ) , 8 2( ) = 8

2( )

6
(23)

3( ) , 3
8 3( ) = 3

8

2( )

8
(24)

4( ) , 8 4( ) = 8

2( )

14
(25)

results in the ( ) being polynomials in the parameters
4 6 8 14 and having the same positive zero set (i.e.,

the same roots satisfying 0) as the system (18)-(21).
The degrees of the polynomials are given in the table
below.

deg 4 deg 6 deg 8 deg 14

1( ) 1 1 7 1

2( ) 1 1 7 1

3( ) 2 2 8 2

4( ) 1 1 7 1

All possible solutions to this set may be found using
elimination theory as is now summarized.

A. Solving Systems of Polynomial Equations [17][18]
The question at hand is “Given two polynomial equations
( 1 2) = 0 and ( 1 2) = 0, how does one solve
them simultaneously to eliminate (say) 2?”. A systematic
procedure to do this is known as elimination theory and uses
the notion of resultants. Briefly, one considers ( 1 2)
and ( 1 2) as polynomials in 2 whose coefficients are
polynomials in 1. Then, for example, letting ( 1 2)
and ( 1 2) have degrees 3 and 2, respectively in 2,
they may be written in the form

( 1 2) = 3( 1)
3
2 + 2( 1)

2
2 + 1( 1) 2

+ 0( 1)

( 1 2) = 2( 1)
2
2 + 1( 1) 2 + 0( 1)

The × Sylvester matrix, where =
deg

2
{ ( 1 2)}+ deg 2

{ ( 1 2)} = 3 + 2 = 5, is
defined by ( 1) ,

0( 1) 0 0( 1) 0 0

1( 1) 0( 1) 1( 1) 0( 1) 0

2( 1) 1( 1) 2( 1) 1( 1) 0( 1)

3( 1) 2( 1) 0 2( 1) 1( 1)
0 3( 1) 0 0 2( 1)

The resultant polynomial is then defined by

( 1) = Res
³
( 1 2) ( 1 2) 2

´
, det ( 1)

(26)
and is the result of eliminating the variable 2 from
( 1 2) and ( 1 2). In fact, the following is true.
Theorem 1: [17][18] Any solution ( 10 20) of
( 1 2) = 0 and ( 1 2) = 0 must have ( 10) = 0.

Though the converse of this theorem is not necessarily
true, the finite number of solutions of ( 1) = 0 are the
only possible candidates for the first coordinate (partial solu-
tions) of the common zeros of ( 1 2) and ( 1 2).
Whether or not such a partial solution extends to a full
solution is easily determined by back solving and checking
the solution.
Using the polynomials (22)-(25) and the computer al-

gebra software program MATHEMATICA [19], the variable
4 is eliminated first to obtain three polynomials in three

unknowns as

1 2( 6 8 14) , Res
³

1 2 4

´
1 3( 6 8 14) , Res

³
1 2 4

´
1 4( 6 8 14) , Res

³
1 2) 4

´
where

deg 6 deg 8 deg 14

1 2 1 14 1

1 3 2 22 2

1 4 1 14 1

Next 6 is eliminated to obtain two polynomials in two
unknowns as

1 2 3( 8 14) , Res
³

1 2 1 3 6

´
1 2 4( 8 14) , Res

³
1 2 1 4 6

´
where

deg 8 deg 14

1 2 3 50 2

1 2 4 28 1

Finally 14 is eliminated to obtain a single polynomial in
8 as

( 8) , Res
³

1 2 3( 8 14) 1 2 4( 8 14) 14

´
where

deg 8 = 104

The parameter 8 was chosen as the variable not eliminated
because its degree was the highest at each step meaning it
would have a larger (in dimension) Sylvester matrix than
using any other variable. The positive roots of ( 8) = 0
are found which are then substituted into 1 2 3 = 0
(or 1 2 4 = 0) which in turn are solved to obtain the
partial solutions ( 8 14). The partial solutions ( 8 14)
are then substituted into 1 2 = 0 (or 1 3 = 0 or
1 4 = 0) which are solved to obtain the partial solutions

( 6 8 14) so that they in turn may be substituted into
1 = 0 (or 2 = 0 or 3 = 0 or 4 = 0) which are
solved to obtain the solutions ( 4 6 8 14). These
solutions are then checked to see which ones satisfy the
complete system of polynomials equations (22)-(25) and
those that do constitute the candidate solutions for the
minimization. Based on physical considerations, the set of
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candidate solutions is non empty. From the set of candidate
solutions, the one that gives the smallest squared error is
chosen.

B. Mechanical Parameters
Once the electrical parameters have been found, the two

mechanical parameters ( = ) can be found
using a linear least-squares algorithm. To do so, equations
(8) and (9) are solved for resulting
in· ¸

=
(1 )

2
+ 2 2

·
1

1

¸
×·

( ) +
( ) + +

¸
(27)

Noting that

= +
1 1 2

= +
1 1

(1 )

(28)
then quantities on the right hand side of (27) are all known
once the electrical parameters have been computed. With
16 , 17 , , equation (7) may be rewritten as

=

· ¸ 16

17

so that the standard linear squares approach is directly
applicable. Then

, 16 , 17 16 (29)

V. EXPERIMENTAL RESULTS
A three phase, 0 5 hp, 1735 rpm ( = 2 pole-pair)

induction machine was used for the experiments. A 4096
pulse/rev optical encoder was attached to the motor for
position measurements. The motor was connected to a three-
phase, 60 Hz, 230 V source through a switch with no load
on the machine. When the switch was closed, the stator
currents and voltages along with the rotor position were
sampled at 4 kHz. Filtered differentiation (using digital
filters) was used for calculating the acceleration and the
derivatives of the voltages and currents. Specifically, the
signals were filtered with a lowpass digital Butterworth
filter followed by reconstruction of the derivatives using
( ) = ( ( ) ( )) where is the sampling

interval. The voltages and currents were put through a 3 2
transformation to obtain the two phase equivalent voltages

. The sampled two phase equivalent current
and its simulated response sim are shown in Figure
1 (The simulated current will be discussed below). The
phase current is similar, but shifted by (2 ).
The calculated speed (from the position measurements)
and the simulated speed sim are shown in Figure 2 (the
simulated speed sim will be discussed below). Using
the data { } collected between 5 57 sec
to 5 8 sec, the quantities
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Fig. 1. Phase current and its simulated response sim

2 2 2 2 =
were calculated and the regressor matrices

and were computed. The procedure ex-
plained in Section IV was then carried out to compute
4 6 8 14. In this case, there was only one extremum

point that had positive values for all the . The table
below presents the parameter values determined using the
nonlinear least-squares methodology along with their cor-
responding parametric error indices [2].
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Fig. 2. Calculated speed and simulated speed sim.

Parameter Estimated Value Parametric Error
4 519 7 185 8
6 1848 3 796 4
8 0 1311 0 0103
14 259 5 59 4

The residual error index was calculated to be 13 43% [2].
The motor’s electrical parameters are computed using (14)
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to obtain

= 5 12 Ohms, = 0 1311 sec (30)
= 0 2919 H, = 0 1007 (31)

By way of comparison, the stator resistance was measured
using an Ohmmeter giving the value of 4 9 Ohms, and a no
load test was also run to compute the value of resulting
in 0 33 H.
Using the electrical parameters, the rotor flux linkages

( ) and ( ) were reconstructed and
used to identify the mechanical parameters. The table below
gives the estimated values and the parametric error indices.

Parameter Estimated Value Parametric Error
16 952 38 126 92

17 0 5714 0 1528

The residual error index was calculated to be 18 6%. The
2× 2 regressor matrix for these two parameters had a
condition number of 1 060 × 103 [20]. The corresponding
values for the motor parameters and are then computed
using (29) to obtain

= 16 = 0 0021 kgm2 (32)
= 17 16 = 0 0012 Nm/(rad/sec). (33)

A. Simulation of the Experimental Motor
Another useful way to evaluate the identified parameters

(30)-(31) and (32)-(33) is to simulate the motor using
these values with the measured voltages as input. One then
compares the simulation’s output (stator currents) with the
measured outputs. The experimental voltages were then
used as input to a simulation of the model using the parame-
ter values from (30)-(31) and (32)-(33). The resulting phase
current sim from the simulation is shown in Figure 1

and corresponds well with the actual measured current .
Similarly, the resulting speed sim from the simulation is
shown in Figure 2.

VI. DISCUSSION

The technique proposed here is relevant for other systems
and not just for induction machine parameter identification.
The first issue of concern in applying this methodology to
other systems is that the parameters used to develop a linear
overparameterized model be rationally related. The next
issue is the symbolic computation of the Sylvester matrices
to compute the resultant polynomials. As the degrees of
the polynomials to be solved increase, the dimension of
the corresponding Sylvester matrices increase, and therefore
the symbolic computation of their determinants becomes
more computationally intensive. The particular application
considered in this work did not experience such computa-
tional difficulty. Interestingly, the recent work of [21][22]
is promising for the efficient symbolic computation of the
determinants of large Sylvester matrices.
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[4] M. Vélez-Reyes, K. Minami, and G. Verghese, “Recursive speed and
parameter estimation for induction machines,” in Proceedings of the
IEEE Industry Applications Conference, 1989. San Diego, California.
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