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Abstract� The mathematical theory of resultants is used
to compute the switching angles in a multilevel converter
so that it produces the required fundamental voltage while
at the same time cancels out unwanted order harmonics.
Experimental results are given for the three DC source case.
It is shown that for a range of the modulation index mI ,
the switching angles can be chosen to produce the desired
fundamental V1 = mI(s4Vdc/π) while at the same time 5th
and 7th harmonics are identically zero.
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I. Introduction

A multilevel converter is a power electronic system that
synthesizes a desired voltage output from several levels of
dc voltages as inputs. For this reason, multilevel inverters
can easily provide the high power required of a large elec-
tric traction drive. For example, in a parallel-conÞgured
HEV, a cascaded H-bridges inverter can be used to drive
the traction motor from a set of batteries, ultracapacitors,
or fuel cells. In a distributed energy system consisting of
fuel cells, wind turbines, solar cells, etc., the multilevel con-
verter provides a mechanism to feed these sources into an
existing three phase power grid. The use of a cascade in-
verter also allows the converter to operate even with the
failure of one level of the inverter structure [13][14][15].
A multilevel inverter is more efficient than a two-level

pulse width modulation (PWM) inverter. This is because
the individual devices in a multilevel converter have a much
lower dV/dt per switching, and they switch at the much
lower fundamental frequency rather than at 2kHz - 20kHz
frequency in a PWM-controlled inverters. As a result, the
switching losses are on the order of ten times less in a mul-
tilevel inverter. Three, four, and Þve level rectiÞer-inverter
drive systems that have used some form of multilevel PWM
as a means to control the switching of the rectiÞer and
inverter sections have been investigated in the literature
[5][6][7][12][19].
However, a key issue in designing an effective multilevel

inverter is to ensure that the voltage total harmonic dis-
tortion (THD) is small enough. To do so requires both an
(mathematical) algorithm to determine when the switch-
ing should be done so as to not produce harmonics and a
fast real-time computing system to implement the strategy.

The present work adresses both of these issues.

II. Cascaded H-bridges

Cascade multilevel inverter consists of a series of H-
bridge (single-phase full-bridge) inverter units. The gen-
eral function of this multilevel inverter is to synthesize a
desired voltage from several separate dc sources (SDCSs),
which may be obtained from batteries, fuel cells, or ultraca-
pacitors in a HEV. Figure 1 shows a single-phase structure
of a cascade inverter with SDCSs [9]. Each SDCS is con-

Fig. 1.

nected to a single-phase full-bridge inverter. Each inverter
level can generate three different voltage outputs, +Vdc, 0
and −Vdc by connecting the dc source to the ac output side
by different combinations of the four switches, S1, S2, S3
and S4. The ac output of each level�s full-bridge inverter is
connected in series such that the synthesized voltage wave-
form is the sum of all of the individual inverter outputs.
The number of output phase voltage levels in a cascade
mulitilevel inverter is then 2s+1, where s is the number of
dc sources. An example phase voltage waveform for an 11-
level cascaded multilevel inverter with Þve SDSCs (s = 5)
and Þve full bridges is shown in Figure 2. The output phase
voltage is given by van = va1 + va2 + va3 + va4 + va5.
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Fig. 2.

With enough levels and an appropriate switching algo-
rithm, the multilevel inverter results in an output volt-
age that is almost sinusoidal. For the 5 SDCS example
shown in Figure 2, the waveform has less than 5% THD
with each of the active devices of the H-bridges active de-
vices switching only at the fundamental frequency. Each
H-bridge unit generates a quasi-square waveform by phase-
shifting its positive and negative phase legs� switching tim-
ings. Each switching device always conducts for 180◦ (or
1
2 cycle) regardless of the pulse width of the quasi-square
wave so that this switching method results in equalizing
the current stress in each active device.

III. Switching Algorithm for the Multilevel
Converter

The Fourier series expansion of the (stepped) output
voltage waveform of the multilevel inverter as shown in
Figure 2 is [13][14][15]

V (ωt) = (1)
∞X

n=1,3,5,...

4Vdc
nπ

(cos(nθ1) + · · ·+ cos(nθs)) sin(nωt)

where s is the number of dc sources. Ideally, given a de-
sired fundamental voltage V1, one wants to determine the
switching angles θ1, · · · , θn so that (1) becomes V (ωt) =
V1 sin(ωt). In practice, one is left with trying to do this
approximately. Two predominate methods in choosing the
switching angles θ1, · · · θn are (1) eliminate the lower fre-
quency dominant harmonics, or (2) minimize the total har-
monic distortion. The more popular and straightforward
of the two techniques is the Þrst, that is, eliminate the
lower dominant harmonics and Þlter the output to remove
the higher residual frequencies. Here, the choice is also to
eliminate the lower frequency harmonics.
The goal here is to choose the switching angles 0 ≤ θ1 <

θ2 < · · · < θs ≤ π/2 so as to make the Þrst harmonic equal
to the desired fundamental voltage V1 and speciÞc higher
harmonics of V (ωt) equal to zero. As the application of

interest here is a three-phase motor drive, the triplen har-
monics in each phase need not be canceled as they auto-
matically cancel in the line-to-line voltages. Consequently,
the desire here is to cancel the 5th, 7th, 11th, 13th order har-
monics as they dominate the total harmonic distortion.

The mathematical statement of these conditions is then

4Vdc
π

(cos(θ1) + cos(θ2) + · · ·+ cos(θs)) = V1

cos(5θ1) + cos(5θ2) + · · ·+ cos(5θs) = 0

cos(7θ1) + cos(7θ2) + · · ·+ cos(7θs) = 0 (2)

cos(11θ1) + cos(11θ2) + · · ·+ cos(11θs) = 0

cos(13θ1) + cos(13θ2) + · · ·+ cos(13θs) = 0.

This is a system of 5 transcendental equations in the un-
knowns θ1, θ2, · · · , θs so that at least 5 steps are needed
(s = 5) if there is to be any chance of a solution. One ap-
proach to solving this set of nonlinear transcendental equa-
tions (2) is to use an iterative method such as the Newton-
Raphson method [3][13][14][15]. The correct solution to the
conditions (2) would mean that the output voltage of the
11−level inverter would not contain the 5th, 7th, 11th and
13th order harmonic components.

In what follows, a methodology for Þnding all the so-
lutions to (2) is presented. It will be shown that a solu-
tion exists for only speciÞc ranges of the modulation index1

mI , V1/ (s4Vdc/π). As one would expect, this range does
not include the low end or the high end of the modulation
index.

The methodology is based on the mathematical theory
of resultants of polynomials [4] which is a systematic pro-
cedure for Þnding the roots of systems of polymomial equa-
tions. To use the method, the system (2) must be Þrst con-
verted to an equivalent polynomial system. This is done
by deÞning (with s = 5)

x1 = cos(θ1), x2 = cos(θ2), x3 = cos(θ3), x4 = cos(θ4), x5 = cos(θ5).

The trigonometric identities

cos(5θ) = 5 cos(θ)− 20 cos3(θ) + 16 cos5(θ)
cos(7θ) = −7 cos(θ) + 56 cos3(θ)− 112 cos5(θ) + 64 cos7(θ)
cos(11θ) = −11 cos(θ) + 220 cos3(θ)− 1232 cos5(θ) +

2816 cos7(θ)− 2816 cos9(θ) + 1024 cos11(θ)
cos(13θ) = 13 cos(θ)− 364 cos3(θ) + 2912 cos5(θ)−

9984 cos7(θ) + 16640 cos9(θ)−
13312 cos11(θ) + 4096 cos13(θ)

1Each inverter has a dc source of Vdc so that the maximum out-
put voltage of the multilevel inverter is sVdc. A square wave of
amplitude sVdc results in the maximum fundamental output pos-
sible of V1max = 4sVdc/π. The modulation index is therefore
mI , V1/V1max = V1/ (s4Vdc/π) .
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are then used in (2) so that the conditions are now

p1(x) , x1 + x2 + x3 + x4 + x5 −m = 0

p5(x) ,
5X
i=1

¡
5xi − 20x3i + 16x5i

¢
= 0

p7(x) ,
5X
i=1

¡−7xi + 56x3i − 112x5i + 64x7i ¢ = 0
p11(x) ,

5X
i=1

¡−11xi + 220x3i − 1232x5i+
2816x7i − 2816x9i + 1024x11i

¢
= 0

p13(x) ,
5X
i=1

¡
13xi − 364x3i + 2912x5i − 9984x7i

+16640x9i − 13312x11i + 4096x13i
¢
= 0

(3)

where x = (x1, x2, x3, x4, x5) and m , V1/ (4Vdc/π). This
is now a set of Þve polynomial equations in the Þve un-
knowns x1, x2, x3, x4, x5. Further, the solutions must sat-
isfy 0 ≤ x5 < · · · < x2 < x1 ≤ 1. The theory of resultants
is brießy described next as it provides the method to solve
such sets of polynomial equations.

A. Resultants

The theory of resultants provides a systematic way to
solve systems of polynomial equations [2][4]. For example,
given the two polynomials

a(x1, x2) = a3(x1)x
3
2 + a2(x1)x

2
2 + a1(x1)x2 + a0(x1)

(4)

b(x1, x2) = b3(x1)x
3
2 + b2(x1)x

2
2 + b1(x1)x2 + b0(x1)

the issue here is to Þnd their common zeros, that is, the
values (x10, x20) such that

a(x10, x20) = b(x10, x20) = 0.

This question can be answered by asking a more general
question. SpeciÞcally, does there exist another pair of poly-
nomials

α(x1, x2) = α2(x1)x
2
2 + α1(x1)x2 + α0(x1)

β(x1, x2) = β2(x1)x
2
2 + β1(x1)x2 + β0(x1).

such that

α(x1, x2)a(x1, x2) + β(x1, x2)b(x1, x2) = 1.

Note that if such a pair {α(x1, x2), β(x1, x2)} exists, then
a(x1, x2), b(x1, x2) cannot have a common zero. Also, if
such a solution pair is found, then it can be assumed that
(see [2][4])

degx2 {α(x1, x2)} < degx2 {b(x1, x2)} = 3
degx2 {β(x1, x2)} < degx2 {a(x1, x2)} = 3.

By equating powers of x2, the equation α(x)a(x) +
β(x)b(x) = 1 may be rewritten in matrix form as

a0 0 0 b0 0 0
a1 a0 0 b1 b0 0
a2 a1 a0 b2 b1 b0
a3 a2 a1 b3 b2 b1
0 a3 a2 0 b3 b2
0 0 a3 0 0 b3




α0
α1
α2
β0
β1
β2

 =

1
0
0
0
0
0

 (5)

where the 6 × 6 matrix on the left-hand side is referred
to as the Sylvester Resultant matrix and is denoted here
as Sa,b(x1) ∈ <6×6[x1]. Note that the elements of the Re-
sultant matrix Sa,b(x1) are polynomials in x1. For an ar-
bitrary pair of polynomials {a(x), b(x)} of degrees na, nb
in x2, respectively, the matrix Sa,b(x1) is of dimension
(na + nb)× (na + nb).
Theorem
The resultant matrix is nonsingular if and only if a(x)

and b(x) are coprime (that is, if only if they have no zeros
in common).
Proof See [2][4]
As a consequence of this theorem, the pair of polynomials

(4) has a solution if and only if r(x1) , detSa,b(x1) = 0.
One computes the roots x1k, k = 1, ..., n1 of r(x1) = 0
and substitutes these roots into a(x1, x2). Then, for k =
1, ..., n1 solving a(x1k, x2) = 0 gives the roots x2k/ 8 =
1, ..., na. The common zeros of {a(x1, x2), b(x1, x2)} are
then those values of (x1k, x2k/) that satisfy b(x1k, x2k/) = 0.

B. Three DC Source Case

To illustrate the use of resultant theory to solve the sys-
tem (3), the three DC source case is considered, that is,
s = 3. The conditions are then

p1(x) , x1 + x2 + x3 −m = 0, m , V1
4Vdc/π

= smI

p5(x) ,
3X
i=1

¡
5xi − 20x3i + 16x5i

¢
= 0 (6)

p7(x) ,
3X
i=1

¡−7xi + 56x3i − 112x5i + 64x7i ¢ = 0.
Substitute x3 = m− (x1 + x2) into p5, p7 to get

p5(x1, x2) = 5x1 − 20x31 + 16x51 + 5x2 − 20x22 + 16x52
+5(m− x1 − x2)− 20(m− x1 − x2)3
+16(m− x1 − x2)5

p7(x1, x2) = −7x1 + 56x31 − 112x51 + 64x71 − 7x2
+56x32 − 112x52 + 64x72 − 7(m− x1 − x2)
+56(m− x1 − x2)3 − 112(m− x1 − x2)5
+64(m− x1 − x2)7

The goal here is to Þnd solutions of p5(x1, x2) =
0, p7(x1, x2) = 0. For each Þxed x1, p5(x1, x2) can be
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viewed as a polynomial of in x2 whose coefficients are poly-
nomials in x1. For each Þxed x1, the pair of polynomials
p5(x1, x2) = 0, p7(x1, x2) = 0 has a solution x2 if and only
if the corresponding resultant matrix Sp5,p7(x1) is singu-
lar. Here degx2{p5(x1, x2)} = 4 and degx2{p7(x1, x2)} = 6
so that the resultant matrix Sp5,p7(x1) is an element of
<10×10[x1], that is, it is a 10 × 10 matrix whose elements
are polynomials in x1. The determinant of this matrix
r5,7(x1) , detSp5,p7(x1) is a polynomial in x1. For any
(x10, x20) which is a simultaneous solution of p5(x1, x2) =
0, p7(x1, x2) = 0, it must follow that r5,7(x10) = 0. Conse-
quently, Þnding the roots r5,7(x1) gives candidate solutions
for x1 to check for common zeros of p5 = p7 = 0. The resul-
tant polynomial r5,7(x1) of the pair {p5(x1, x2), p7(x1, x2)}
was found with Mathematica using the Resultant com-
mand. The polynomial r5,7(x2) turned out to be a 22nd

order polynomial. The algorithm is as follows:
Algorithm for the 7 Level Case

1. Given m, Þnd the roots of r5,7(x1) = 0.
2. Discard any roots that are less than zero, greater than 1
or that are complex. Denote the remaining roots as {x1i}.
3. For each Þxed zero x1i in the set {x1i}, substitute it into
p5 and solve for the roots of p5(x1i, x2) = 0.
4. Discard any roots (in x2) that are complex, less than
zero or greater than one. Denote the pairs of remaining
roots as {(x1j , x2j)}.
5. Compute m− x1j − x2j and discard any pair (x1j , x2j)
that makes this quantity negative or greater than one. De-
note the triples of remaining roots as {(x1k, x2k, x3k)}.
6. Discard any triple for which x3k < x2k < x1k does not
hold. Denote the remaining triples as {(x1l, x2l, x3l)}. The
switching angles that are a solution to the three level sys-
tem (6) are

{(θ1l, θ2l, θ3l)} = {
¡
cos−1(x1l), cos−1(x2l), cos−1(x3l)

¢}.
B.1 Minimization of the 5th and 7th Harmonic Compo-

nents

For those values of m for which p5(x1, x2), p7(x1, x2) do
not have common zeros satisfying 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1,
the next best thing is to minimize the error

c(x1, x2) = p
2
5(x1, x2)/25 + p

2
7(x1, x2)/49.

This was accomplished by simply computing the values of
c(j∆x, k∆y) for j, k = 0, ..., 1000 with ∆x = .001,∆y =
.001 and then choosing the minimum value.

B.2 Results for the Three DC Source Inverter

The results are summarized in Figures 3. This Þgure
shows the switching angles θ1, θ2, θ3 vs m for those values
ofm in which the system (6) has a solution. The parameter
m was incremented in steps of 0.01. Note that for m in
the range from approximately 1.49 to 1.85, there are two
different sets of solutions that solve (6). (One would then
choose the set which happens to result in smaller 11th and
13th harmonics.) On the other hand, for m ∈ [0, 0.8], m ∈
[0.83, 1.15] and m ∈ [2.52, 2.77] there are no solutions to
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Fig. 3. The switching angle θ1, θ2, θ3 in degrees vs m

(6). Interestingly, for m ≈ 0.8,m ≈ 0.82 and m ≈ 2.76
there are (isolated) solutions.
As pointed out above, for m ∈ [0, 0.8], m ∈ [0.83, 1.15],

m ∈ [2.52, 2.77] andm ∈ [2.78, 3] there are no solutions sat-
isfying the conditions (6). Consequently, for these ranges
of m, the switching angles were determined by minimizing

the error
q
(p5/5)

2 + (p7/7)
2. Figure 4 shows a plot of the

resulting mimimum error vs. m for these values of m. As
Figure 4 shows, when m ≈ 0.81 and m ≈ 2.76, the error is
zero corresponding to the isolated solutions to (6) for those
values of m. For m = 1.15 and m = 2.52, the error goes
to zero because these values correspond to the boundary
of the exact solutions of (6). However, note, e.g., when
m = 0.25, the error is about 0.25, that is, the error is the
same size as m. Other than close to the endpoints of the
two intervals [0, 0.8], [2.78, 3] the minimum error is too large
to make the corresponding switching angles for this inter-
val of any use. Consequently, for m in this interval, one
must use some other approach (e.g., PWM) in order to get
reduced harmonics. For the other two intervals [0.83, 1.15],
[2.52, 2.77], the minimum error is around 5% or less so that
it might be satisfactory to use the corresponding switching
angles for these intervals.

IV. Experimental Work

A prototype three-phase 11-level wye-connected cas-
caded inverter has been built using 100 V, 70 A MOSFETs
as the switching devices [18]. The gate driver boards and
MOSFETs are shown in Figure 5 below. A battery bank
of 15 SDCSs of 48 Volts DC (not shown) each feed the
inverter (5 SDCSs per phase). In the experimental study
here, this prototype system was conÞgured to be a 7-level
(3 SDCSs per phase) converter with each level being 12
Volts. The ribbon cable shown in the Þgure provides the
communication link between the gate driver board and the
real-time processor. In this work, the RT-LAB real-time
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Fig. 4. Error =
q
(p5/5)

2 + (p7/7)
2 vs. m

Fig. 5. Gate Driver Boards and MOSFETs for the Mulitlevel Inverter

computing platform from Opal-RT-Technologies Inc. [8]
was used to interface the computer (which generates the
logic signals) to this cable. The RT-LAB system allows
one to write the switching algorithm in Simulink which
is then converted to C code using RTW. The RT-LAB
software provides icons to interface the Simulink model
to the digital I/O board and also converts the C code into
executables. As explained above, an execution time of 16
microseconds was used. This required using a dual proces-
sor board with shared memory to spread the computation
between two processors wherein one processor controlled
two of the phases while the other processor controlled the
remaining phase. The RT-LAB software provides the ca-
pabilty to easily set up this distributed computation. Fur-
ther, the XHP (extra high performance) option in RT-
LAB was also required to achieve the 16 microsecond step
size. In this option, an operating system is not used in
order to remove its overhead from the computational bur-
den.Experiments were performed to validate the theoretical
results of section III-B.2. That is, the elimination of the 5th

and 7th harmonics (at 300 Hz and 420 Hz, respectively) in
the output of a three phase mutlilevel inverter. Recall, from
section III, that the triplen harmonics (180 Hz, 360 Hz, 540

Fig. 6. Block diagram of the distributed computing layout for a three
phase multilevel converter.

Hz, etc.) in each phase need not be canceled as they auto-
matically cancel in the line-to-line voltages. Experiments
were performed for several values of the parameter m each
consistent with predicted results given in Figure 4. How-
ever, due to space limitations, only the case withm = 1.5 is
reported here. The frequency was set to 60 Hz in each case
and the program was run in real time with a 16 microsec-
onds sample period, i.e., the logic signals were updated to
the gate driver board every 16 microseconds. This sample
period was chosen to provide a time resolution of 1/1000
of the 60 Hz period as in [13].
The voltage was measured using a high speed data

acquisition oscilloscope every T = 5 microseconds re-
sulting in the data {v(nT ), n = 1, ..., N} where N =
3(1/60)/

¡
5× 10−6¢ = 10000 samples corresponding to

three periods of the 60 Hz waveform. A fast Fourier
transform was performed on this voltage data to get
{�v(kω0), k = 1, ..., N} where the frequency increment is
ω0 = (2π/T )/N = 2π(20) rad/sec or 20 Hz. The num-
ber �v(kω0) is simply the Fourier coefficient of the kth har-
monic (whose frequency is kω0 with ω0 = 2π

N
1
T ) in the

Fourier series expansion of the phase voltage signal v(t).
With ak = |�v(kω0)| and amax = max

k
{|�v(kω0)|} , the data

that is plotted is the normalized magnitude ak/amax.
Figure 7 is the plot of the phase voltage for m = 1.5.

(The spikes on the plot are due to low bit resolution of
the sampling scope and are not present on the actual scope
display). The corresponding FFT of this signal is given in
Figure 8. Figure 8 shows the normalized magnitude of the
5th harmonic is essentially zero and the normalized mag-
nitude of the 7th harmonic is 0.01, for a total normalized
distortion of 0.01 due to these two harmonics. This cor-
responds well with the predicted error of zero in Figure 4.
(Note that are still large triplen harmonics.)

V. Conclusions and Further Work

A full solution to the problem eliminating the 5th and
7th harmonics in a seven level multilevel inverter has been
given. SpeciÞcally, resultant theory was used to completely
characterize for each m when a solution existed and when
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it did not (in contrast to numerical techniques such as
Newton-Raphson). Futher, it was shown that for a range
of values of m, there were two sets of solutions and these
values were also completely characterized. For each value
of m, the solution set that happened to minimize the 11th

and 13th harmonics was chosen. It was shown that the
algorithm could be easily implemented in the high level
Simulink software using a dual processor with shared mem-
ory using the RT-LAB software. The experimental results
presented corresponded well to the theoretically predicted
results. Future work is underway to consider the case stud-
ied by Cunnyngham [3] where the separate dc sources do
not all provide equal voltages Vdc.
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