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Introduction

A multilevel inverter is a power electronic device built to synthe-
size a desired ac voltage from several levels of dc voltages. For
example, the output of solar cells are dc voltages, and if this energy
is to be fed to into an ac power grid, a power electronic interface
is required. A multilevel inverter is ideal for connecting such 
distributed dc energy sources (solar cells, fuel cells, the rectified
output of wind turbines) to an existing ac power grid.

Transformerless multilevel inverters are uniquely suited for utility
applications because of the high VA ratings possible with these
inverters [1]. The devices in a multilevel inverter have a much
lower dV/dt per switching, and they operate at high efficiencies
because they can switch at a much lower frequency than PWM-
controlled inverters. Three, four, and five level rectifier-inverter
drive systems that have used some form of multilevel PWM as a
means to control the switching of the rectifier and inverter sections
have been investigated in the literature [2, 3, 4, 5, 6]. Here a fun-
damental frequency switching scheme (rather than PWM) is con-
sidered because, as just mentioned, this results in significantly
lower switching losses.

A key issue in the fundamental switching scheme is to determine
the switching angles (times) so as to produce the fundamental
voltage and not generate specific higher order harmonics. The
recent book [7] summarizes the current state of the art in harmonic
elimination. Often iterative techniques are used to solve for the
switching angles [8], though such an approach does not guarantee
finding all the possible solutions. In [9], a genetic algorithm
approach is used to solve for the switching angles. In Kato [10], a
homotopy technique is used to solve the harmonic elimination
equations for a single DC source inverter.

Previous work in [11, 12, 13] has shown that the transcendental
equations characterizing the harmonic content can be converted
into polynomial equations which are then solved using the method
of resultants from elimination theory [14, 15]. However, if there
are several dc sources, the degrees of the polynomials in these
equations are large. As a result, one reaches the limitations of the
capability of contemporary computer algebra software tools (e.g.,
Mathematica or Maple) to solve the system of polynomial equa-
tions using elimination theory (by computing the resultant poly-
nomial of the system).

A major distinction between the work in [11, 12, 13] and the work
presented here is that here the theory of power sums [16] is
exploited to reduce the degree of the polynomial equations that
must be solved so that they are well within the capability of 
existing computer algebra software tools. As in [13], the approach
presented in this work produces all possible solutions in contrast
to numerical techniques. Experimental verification that the low
order harmonics are indeed eliminated is also presented by 
driving a three-phase induction motor from an 11-level inverter. A
preliminary version of this work was presented in [17].

Cascaded H-bridges

A cascade multilevel inverter consists of a series of H-bridge (sin-
gle-phase full-bridge) inverter units. The inverter synthesizes a
desired voltage from several separate dc sources (SDCSs), which
may be obtained from solar cells, fuel cells, batteries, ultracapa-
citors, etc. The left side of Fig. 1 shows a single-phase structure of
a cascade inverter with SDCSs [1]. Each SDCS is connected to a
single-phase full-bridge inverter. Each inverter level can generate
three different voltage outputs, + Vdc, 0 and – Vdc by connecting
the DC source to the AC output side by different combinations of
the four switches, S1, S2, S3 and S4. The ac output of each level’s
full-bridge inverter is connected in series such that the synthesized
voltage waveform is the sum of all of the individual inverter out-
puts. The number of output phase voltage levels in a cascade multi-
level inverter is then 2s + 1,where s is the number of dc sources.
An example phase voltage waveform for an 11-level cascaded
multilevel inverter with five SDSCs (s = 5) and five full bridges is
shown on the right side of Fig. 1.

The output phase voltage is given by vn = v1 + v2 + v3 + v4 + v5.
With enough levels and an appropriate switching algorithm, the
multilevel inverter results in an output voltage that is almost 
sinusoidal. For the 11-level example shown in Fig. 1, the wave-
form has less than 5 % total harmonic distortion (THD) with each
the H-bridges’ active devices switching only at the fundamental
frequency. As seen in Fig. 1, the active power drawn from each
source is not equal. However, the voltage levels of the sources can
be kept balanced by using a pattern swapping scheme such as
described in [18-19]. In that scheme, every half-cycle the θi are
simply rotated through the various levels so that after five half-
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cycles they are back to their original configuration (see [18-19] for
details). For dealing with non equal DC sources, see [20].

Mathematical model of switching

Following the development in [13] (see also [18]), the Fourier
series expansion of the (staircase) output voltage waveform of the
multilevel inverter as shown in Fig. 1 is

(1)

where s is the number of dc sources. Ideally, given a desired fun-
damental voltage V1, one wants to determine the switching angles
θ1, …, θs so that (1) becomes V(ωt) = V1 sin(ωt). In practice, one
is left with trying to do this approximately. The goal here is to
choose the switching angles 0 ≤ θ1 < θ2 < ··· < θs ≤ π/2 so as to
make the first harmonic equal to the desired fundamental voltage
V1 and specific higher harmonics of V(ωt) equal to zero. For three-
phase systems, the triplen harmonics in each phase need not be
canceled as they automatically cancel in the line-to-line voltages.
Specifically, in the case of s = 5 dc sources, the desire is to cancel
the 5th, 7th, 11th, 13th order harmonics as they dominate the total
harmonic distortion. The mathematical statement of these condi-
tions is then 

(2)

This is a system of five transcendental equations in the five
unknowns θ1, θ2, θ3, θ4, θ5. The question here is “When does the
set of equations (2) have a solution?”. The correct solution to the
conditions (2) would mean that the output voltage of the 11–level
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inverter would not contain the 5th, 7th, 11th and 13th order har-
monic components. One approach to solving this set of nonlinear
transcendental equations (2) is to use an iterative method such as
the Newton-Raphson method [18-21]. In contrast to iterative
methods, the following presents a new approach that obtains all
possible solutions and requires significantly less computational 
effort than the approach in [13]. To proceed with the new metho-
dology, first let s = 5, and define xi = cos (θi) for i = 1, ..., 5. Using
the trigonometric identities

the conditions (2) become

(3)

where x = (x1, x2, x3, x4, x5) and m =∆ V1/(4 Vdc/π). The modulation
index is ma = m/s = V1 /(s4Vdc/π). (Each inverter has a DC source
of Vdc so that the maximum output voltage of the multilevel inverter
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Fig. 1: Left: Single-phase structure of a multilevel cascaded H-bridges inverter. Right: Output waveform of an 11-level cascade
multilevel inverter



The Use of Power Sums to Solve the Harmonic Elimination Equations for Multilevel Converters

is sVdc. A square wave of amplitude sVdc results in the maximum
fundamental output possible of V1max = 4sVdc /π so ma =∆   V1/V1max
= V1/(s4Vdc/π) = m/s.) 

This is a set of five equations in the five unknowns x1, x2, x3, x4,
x5. Further, the solutions must satisfy 0 ≤ x5 ≤ … ≤ x2 ≤ x1 ≤ 1.
This development has resulted in a set of polynomial equations
rather than trigonometric equations. The degrees of the polynomials
are large which in turn requires the symbolic computation of the
determinant of large square matrices. Contemporary computer
algebra software tools cannot solve these equations on a personal
computer for inverters with more than four dc sources. Here (cf.
[13]) a new approach to solving the system (3) is presented which
greatly reduces the computational burden. This is done by taking
into account the symmetry of the polynomials making up system
(3). Specifically, the theory of power sums [14, 22] is exploited to
obtain a new set of relatively low degree polynomials whose resul-
tants can easily be computed using existing computer algebra soft-
ware tools. Further, in contrast to iterative numerical techniques,
the approach here produces all possible solutions.

Solving polynomial equations

For the purpose of exposition, the three source (7 level) multilevel
inverter will be used to illustrate the approach. The conditions are
then

(4)

Eliminating x3 by substituting x3 = m – (x1 + x2) into p5, p7 gives

(5)

where
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In order to explain the computational issues with finding the zero
sets of polynomial systems, a brief discussion of the procedure to
solve such systems is now given. The question at hand is “Given two
polynomial equations a(x1, x2) = 0 and b(x1, x2) = 0, how does one
solve them simultaneously to eliminate (say) x2?". A systematic pro-
cedure to do this is known as elimination theory and uses the notion
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of resultants [14-15]. Briefly, one considers a(x1, x2) and b(x1, x2) as
polynomials in x2 whose coeffcients are polynomials in x1. Then,
for example, letting a(x1, x2) and b(x1, x2) have degrees 3 and 2,
respectively in x2, they may be written in the form

The n × n Sylvester matrix, where

is defined by

The resultant polynomial is then defined by 

(7)

and is the result of solving a(x1, x2) = 0 and b(x1, x2) = 0 simulta-
neously for x1, i.e., elimi-nating x2 (See [14-15] for a discussion of
elimination theory and resultants). The point here is that as the
degrees of the polynomials increase, the size of the corresponding
Sylvester matrix increases, and therefore the symbolic computation
of its determinant becomes much more computationally intensive.

Power sums

Consider once again the system of polynomial equations (5). In
[13] (see also [11-12]) the authors computed the resultant polyno-
mial of the pair {p5(x1, x2), p7(x1, x2)} to obtain the solutions to
(4). This involved setting up a 10 × 10 Sylvester matrix (10 =
degx2{p5(x1, x2)} + degx2{p7(x1, x2)}) and then computing its
determinant to obtain the resultant polynomial r(x1) whose degree
turned out to be 22. However, as one adds more dc sources to the
multilevel inverter, the degrees of the polynomials go up rapidly.
For example, in the case of four dc sources, the final step of the
method requires computing (symbolically) the determinant of a 
27 × 27 Sylvester matrix to obtain a resultant polynomial of
degree 221. In the case of five sources, using this method, the
authors were only able to get the system of five polynomial equa-
tions in five unknowns to reduce to three equations in three
unknowns. The computation to get it down to two equations in
two unknowns requires the symbolic computation of the determi-
nant of a 33 × 33 Sylvester matrix. To get around this diffculty, a
new approach is developed here which exploits the fact that the
polynomials in (3) are symmetric.

The polynomials p1(x), p2(x), p3(x) in (4) can be written in terms of
power sums, that is, define the power sums (polynomials) t1, t2, t3 as

(8)
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Using the power sums, the polynomials (4) become

(9)

This is now a set of three equations in the four unknowns t1, t3, t5,
t7. However the polynomials of (4) are symmetric in the xi, i.e., for
example, if one interchanges x1 and x3, the polynomials remain the
same. (This also is seen from the fact that the system (4) has been
rewritten in (9) in terms of the power sums which are symmetric
in the xi.) As a result, the theory of power sums says that any set
of symmetric polynomials in the variables x1, x2, ..., xn can be
rewritten in terms of the power sums t1, t2, ..., tn (see [14] page
317). In the case of (9), it turns out that

These are then substituted into (9) to obtain (t =∆   (t1, t2, t3))

which is now a system of three polynomials in three unknowns.
One uses p1(t) = t1 – m = 0 to eliminate t1 so that

where

The key point here is that the degrees of these polynomials in t2,
t3 are much less than the degrees of p5(x1, x2), p7(x1, x2) in x1, x2
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which factors into a polynomial of degree 1 in t3 and of degree 
3 in t3. For each m, one solves Res(q5, q7, t2) = 0 for the roots 
{t3i}i = 1, 2, 3. These roots are then used to solve q5(t2, t3i) = 0 for the
root t2i resulting in the set of 3-tuples {(t1, t2, t3) ∈ CC3 | (t1, t2, t3)
= (m, t2i, t3i) for i = 1, 2, 3} as the only possible solutions to (9).

Solving the Power Sums

For each solution triple (t1, t2, t3), the corresponding values of (x1,
x2, x3) are required to obtain the switching angles. To do so, one
simply uses the resultant method to solve the system of polyno-
mials

for (x1, x2, x3). That is, one computes

and finally

(10)

The procedure is to substitute the solutions of (9) into (10) and
solve for the roots {x3i}. For each x3i, one then solves r1(x2, x3i) for
the roots x2j. Finally, one solves f1(x1, x2j, x3i ) = 0 for x1j to get the
triples {(x1, x2, x3) = (x1j, x2j, x3i), i = 1, 2, 3, j =1, 2} as the only
possible solutions to (4). This finite set of possible solutions 
can then be checked as to which are solutions of (4) satisfying 
0 ≤ x3 ≤ x2 ≤ x1 ≤ 1.

The five DC source case

In this section, the five DC source case is summarized. The poly-
nomials p1(x), p2(x), p3(x), p4(x), p5(x) in (3) are symmetric poly-
nomials and therefore may be rewritten in terms of the power
sums
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Rewriting the polynomials pi(x) in terms of the power sums poly-
nomials gives pi(t) for i = 1, ..., 5 where t =(t1, t2, t3, t4, t5). Now, p1(t)
= t1 – m, so that t1 is eliminated immediately by substituting t1 = m.
This leaves four polynomials in the four unknowns t2, t3, t4, t5.

The explicit expressions for the polynomials are rather long and
are not needed to show the significance of reformulating the poly-
nomials in terms of the power sums. Rather, the key point here is
that the maximum degrees of each of these polynomials in t2, t3,
t4, t5 are much less than the maximum degrees of p1(x), p5(x),
p7(x), p11(x), p13(x) in x1, x2, x3, x4, x5 as seen by comparing their
values given in the two tables below.

Consequently, the computational burden of finding the resultant
polynomials (i.e., the determinants of the Sylvester matrices) is
greatly reduced. Proceeding, the indeterminate t5 is eliminated
first by computing

where

Eliminating t4 from these three polynomials gives the two poly-
nomials

where
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Both of these polynomials have a lower degree in t2 than in t3, so
the resultant computation is less intensive if t2 is eliminated in the
next step rather than t3. Proceeding, t2 is eliminated from r1(t2, t3)
and r2(t2, t3) to get

where C is a constant, g1(m, t3) is a polynomial of degree 2 in t3,
and g2(m, t3) is a polynomial of degree 9 in t3 and degree 39 in 
m = t1. It turns out that neither g1(m, t3) = 0 nor t3 = m3 lead to
solutions for the switching angles as the corresponding xi’s do not
satisfy 0 ≤ x5 ≤ ··· ≤ x2 ≤ x1 ≤ 1. Consequently, only the 9 roots of
g2(m, t3) need be computed for each value of m.

One then back solves these equations for the five tuples (t1, t2, t3,
t4, t5) that are solutions to the system of polynomial equations 
pi(t) for i = 1, ..., 5. To obtain the corresponding values of (x1, x2,
x3, x4, x5) for each of the solutions (t1, t2, t3, t4, t5), elimination 
theory is again used to solve the system of polynomial equations

As in the case of three dc sources, this is straightforwardly accom-
plished (See above).

Computational results

Using the fundamental switching scheme of Fig. 1, the solutions
of (2) were computed using the method described above. These
solutions are plotted in Fig. 2 versus the parameter m. As the plots
show, for m in the intervals [2.21, 3.66] and [3.74, 4.23] as well as
m = 1.88, 1.89, the output waveform can have the desired funda-
mental with the 5th,7th, 11th, 13th harmonics absent. Further, in the
subinterval [2.53, 2.9] two sets of solutions exist, while in the
subinterval [3.05, 3.29], there are three sets of solutions. In the
case of multiple solution sets, one would typically choose the set
that gives the lowest total harmonic distortion (THD). In those
intervals for which no solutions exist, one must use a different
switching scheme (see [23] for a discussion on such possibilities).
The corresponding total harmonic distortion (THD) in percent
was computed out to the 31st according to

and is plotted versus m in Fig. 3 for each of the solution sets
shown in Fig. 2. As this figure shows, one can choose a particular
solution for the switching angles such that the THD is 6.5 % or
less for 2.25 ≤ m ≤ 4.23 (0.45 ≤ ma ≤ 0.846).
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deg in t2 deg in t3 deg in t4 deg in t5
q5(t) 0 1 0 1
q7(t)  2 1 1 1
q11(t) 4 3 2 2
q13(t)  4 3 2 2

degrees in x1, x2, x3, x4, x5

p5(x1, x2, x3, x4, x5) 5
p7(x1, x2, x3, x4, x5) 7
p11(x1, x2, x3, x4, x5) 11
p13(x1, x2, x3, x4, x5) 13

deg in t2 deg in t3 deg in t4
rq5,q7 (t2, t3, t4) 2 1 1
rq5,q11 (t2, t3, t4) 4 2 2
rq5,q13 (t2, t3, t4) 4 3 2

deg in t2 deg in t3
r1(t2, t3) 2 4
r2(t2, t3) 3 4
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For those values of m for which multiple solution sets exist, an
appropriate choice is the one that results in the lowest THD. This
was done and is shown in Fig. 4. Fig. 2 shows that there is a solu-
tion set for m in the interval [2.21, 3.66] that is continuous as a
function of mo. However, Fig. 4 shows that in the subintervals
[2.8, 2.9] and [3.11, 3.29], one chooses a different solution set to
obtain a smaller THD. A look at Fig. 3 shows that this difference
in THD can be as much as 3.5 %, which is significant.

If one had used an iterative method such as Newton-Raphson, then
in all likelihood only one solution set would be found and would
most certainly not be the solution set that results in the lowest
THD for m in the subintervals [2.8, 2.9] and [3.11, 3.29]. The reason
the Newton-Raphson method would not have found this solution
set is simply due to the way it is implemented. One starts with an
initial guess for the angles at m = 2.21 (It would take some guess-
ing to even know what value of m to start with!). Then the solu-
tion set for this value of m would be used as the initial guess for
the solution when m is incremented by ∆m to its next value and so
on. At m = 2.21, there is only one possible solution as Fig. 2
shows. Then, as m is incremented, the Newton-Raphson algorithm
would give the solution set in Fig. 2 that is continuous as a func-
tion of m, which is not always the solution set with the smallest
THD. In contrast, the method proposed here finds the complete
solution set and allows one to be sure that the solution with the
lowest THD is used.

Experimental results

The same experimental setup described in [13] was used for this
work. It is a three-phase 11-level (5 dc sources) wye-connected
cascaded inverter using 100 V, 70 A MOSFETs as the switching
devices [19]. The gate driver boards and MOSFETs are shown in
Fig. 5. A battery bank of 15 SDCSs of 36 V (not shown) each feed
the inverter (5 SDCSs per phase). The ribbon cable shown in the
figure provides the communication link between the gate driver
board and the real-time processor.

In this work, the RT-LAB real-time computing platform from
Opal-RT-Technologies Inc. [24] was used to interface the computer
(which generates the logic signals) to this cable. This system
allows one to implement the switching algorithm as a lookup table
in Simulink which is then converted to C code using RTW (real-
time workshop) from Mathworks. The RT-LAB software provides
icons to interface the Simulink model to the digital I/O board and
converts the C code into executables.

The step size for the realtime implementation was 32 micro-
seconds. This small step was used to obtain an accurate resolution
for implementing the switching times. Using the XHP (extreme
high performance) option in RT-LAB as well as the multiproces-
sor option to spread the computation between two processors, an 
execution time of 32 microseconds can be achieved.

Note that while the computation of the lookup table of Figs. 2 and
4 requires some off-line computational effort, the real-time imple-
mentation is accomplished by putting the data (i.e., Figs. 2 and 4)
in a lookup table and therefore does not require high computa-
tional power for implementation. The multilevel converter was
attached to a three phase induction motor with the following name
plate data: rated hp =1 /3 hp, rated current = 1.5 A, rated speed =
1725 rpm and rated voltage = 208 V (RMS line-to-line at 60 Hz).

In this experiment, m = 3.2 was chosen to produce a fundamental
voltage of V1 = m (4Vdc/π ) = 3.2(4 × 36/π ) = 146.7 along with 
f = 60Hz. As can be seen in Fig. 3, there are three different solution
sets for m = 3.2. The solution set that gave the smallest THD 
(= 2.65 % see Fig. 3) was used. Fig. 6 shows the output voltages
for the three phases.
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Fig. 2: Switching angles vs m for the 5 dc source multilevel
converter (ma = m/s with s = 5)

Fig. 3: The total harmonic distortion versus m for each 
solution set (ma = m/s with s = 5)

Fig. 4: The switching angles vs m which give the lowest THD
for the 5 dc source multilevel converter (ma = m/s with s = 5)



Fig. 7 shows the phase a voltage and its corresponding FFT showing
that the 5th, 7th, 11th and 13th are absent from waveform as 
predicted. The THD of the line-line voltage was computed using
the data in Fig. 7 and was found to be 2.8 %, comparing favorably
with the value of 2.65 % predicted in Fig. 3.

The motor currents corresponding to the output voltages of Fig. 6
are shown in Fig. 8.

Fig. 9 shows the phase a current and its corresponding FFT illus-
trating that the harmonic content of the current (1.9 % THD) is
much less than the voltage due to the filtering by the motor’s
inductance.

Conclusions

A procedure to eliminate harmonics in a multilevel inverter has
been given which exploits the properties of the transcendental
equations that define the harmonic content of the converter output.
Specifically, it was shown that one can transform the transcenden-
tal equations into symmetric polynomials which are then further
transformed into another set of polynomials using power sums.

The Use of Power Sums to Solve the Harmonic Elimination Equations for Multilevel Converters

This formulation resulted in a drastic reduction in the degrees of
the polynomials that characterize the solution. Consequently, the
computation of solutions of this final set of polynomial equations
were easily carried out using elimination theory (resultants) as the
required symbolic computations were well within the capabilities
of contemporary computer algebra software tools. This methodo-
logy resulted in the complete characterization of the solutions to
the harmonic elimination problem. That is, for each m, it produces
all possible solutions or it shows that no solution exists. This is 
in contrast to numerical techniques such as Newton-Raphson,
optimization software, etc. (for example, see [8], [25]) where one
gets only one solution or no solution and is left to ponder whether
a solution exists or not. On the other hand, the approach here is
more computationally complex than the Newton Raphson tech-
nique. (For example, the equations to be solved in [26] involve
both sines and cosines resulting in high degree polynomials for
which a computer algebra system can have diffculty in computing
the resultants.) Finally, experiments were performed and the data
presented corresponded well with the predicted results.
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Fig. 5: Gate driver boards and MOSFETs for the mulitlevel
inverter

Fig. 6: Three phase output voltages for m = 3.2.

Fig. 7: Phase a output voltage waveform (m = 3.2) using the 
solutions set with the lowest THD and its normalized FFT.

Fig. 8: Three phase currents for m = 3.2.
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Fig. 9: Phase a current corresponding to the voltage in Fig. 7
and its normalized FFT.
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