
Abstract-The ability of cascaded H-bridge multilevel inverter 
drives (MLID) to operate under faulty condition including AI-
based fault diagnosis and reconfiguration system is proposed in 
this paper. Output phase voltages of a MLID can be used as 
valuable information to diagnose faults and their locations. It is 
difficult to diagnose a MLID system using a mathematical model 
because MLID systems consist of many switching devices and 
their system complexity has a nonlinear factor. Therefore, a 
neural network (NN) classification is applied to the fault diagnosis 
of a MLID system. Multilayer perceptron (MLP) networks are 
used to identify the type and location of occurring faults. The 
principal component analysis (PCA) is utilized in the feature 
extraction process to reduce the NN input size. A lower 
dimensional input space will also usually reduce the time 
necessary to train a NN, and the reduced noise may improve the 
mapping performance. The genetic algorithm (GA) is also applied 
to select the valuable principal components to train the NN. 

 A reconfiguration technique is also proposed. The proposed 
system is validated with simulation and experimental results. The 
proposed fault diagnostic system requires about 6 cycles (~100 ms
at 60 Hz) to clear an open circuit and about 9 cycles (~150 ms at 
60 Hz) to clear a short circuit fault. The experiment and 
simulation results are in good agreement with each other, and the 
results show that the proposed system performs satisfactorily to 
detect the fault type, fault location, and reconfiguration. 

Index Terms—Fault diagnosis, fault tolerance, genetic 
algorithm, multilevel inverter, neural network, power electronics.

I. INTRODUCTION

Industry has begun to demand higher power ratings, and 
multilevel inverter drives have become a solution for high 
power applications in recent years. A multilevel inverter not 
only achieves high power ratings, but also enables the use of 
renewable energy sources. Two topologies of multilevel 
inverters for electric drive application have been discussed in 
[1]. The cascaded MLID is a general fit for large automotive 
all-electric drives because of the high VA rating possible and 
because it uses several dc voltage sources which would be 
available from batteries or fuel cells [1].  

A possible structure of a three-phase cascaded multilevel 
inverter drive for an electric vehicle is illustrated in Fig. 1.  The 
series of H-bridges makes for modularized layout and 
packaging; as a result, this will enable the manufacturing 
process to be done more quickly and cheaply. Also, the 

reliability analysis reported in [2] indicates that the fault-
tolerance of cascaded MLID has the best life cycle cost. 
However, if a fault (open or short circuit) occurs at a 
semiconductor power switch in a cell, it will cause an 
unbalanced output voltage and current, while the traction 
motor is operating. The unbalanced voltage and current may 
result in vital damage to the traction motor if the traction motor 
is run in this state for a long time. 

Generally, the passive protection devices will disconnect the 
power sources or gate drive signals from the multilevel inverter 
system whenever a fault occurs, stopping the operated process. 
Although a cascaded MLID has the ability to tolerate a fault 
for some cycles, it would be better if we can detect the fault 
and its location; then, switching patterns and the modulation 
index of other active cells of the MLID can be adjusted to 
maintain the operation under balanced load condition.  Of 
course, the MLID can not be operated at full rated power. The 
amount of reduction in capacity that can be tolerated depends 
upon the application; however, in most cases a reduction in 
capacity is more preferable than a complete shutdown.   

A study on fault diagnosis in drives begins with a 
conventional PWM voltage source inverter (VSI) system [3-5]. 
Then, artificial intelligent (AI) techniques such as fuzzy-logic 
(FL) and neural network (NN) have been applied in condition 
monitoring and diagnosis [6-8]. Furthermore, a new topology 
with fault-tolerant ability that improves the reliability of 
multilevel converters is proposed in [9]. A method for 
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Fig. 1. Three-phase wye-connection structure for electric vehicle motor drive. 
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operating cascaded multilevel inverters when one or more 
power H-bridge cells are damaged has been proposed in [2, 10]. 
The method is based on the use of additional magnetic 
contactors in each power H-bridge cell to bypass the faulty cell. 
 One can see from the concise literature survey that the 
knowledge and information of fault behaviors in the system is 
important to improve system design, protection, and fault 
tolerant control. Thus far, limited research has focused on 
MLID fault diagnosis and reconfiguration. Therefore, a MLID 
diagnostic system is proposed in this paper that only requires 
measurement of the MLID’s voltage waveforms and does not 
require measurement of currents. 

II. DIAGNOSTIC SIGNALS

 Before continuing discussion, it should be emphasized that 
the multilevel carrier-based sinusoidal PWM is used for 
controlling gate drive signals for the cascaded MLID. Fig. 2 
shows that the output voltages can be controlled by controlling 
the modulation index (ma). To expediently understand, the two 
separate dc sources (SDCS) cascaded MLID structure is used 
as an example in this section. 
 The selection of diagnostic signals is very important because 
the neural network could learn from unrelated data to classify 
faults which would result in improper classification. 
Simulation results (using power simulation (PSIM) from 
Powersim Inc.) of input motor current waveforms during an 
open circuit fault at different locations of the MLID (shown in 

Fig. 2 (a)) are illustrated in Fig. 3 and Fig. 4. As can be seen in 
Fig. 3 and Fig. 4, the input motor currents can classify open 
circuit faults at the same power cell by tracking current polarity 
(see Fig. 4); however, it is difficult to classify the faults at 
different power cells; the current waveform for a fault of SA+ in 
H-bridge 2 (Fig. 3) looks identical to that for a fault of SA+ in 
H-bridge 1 (Fig. 4 (a)). As a result, the detection of fault 
locations could not be achieved with only using input motor 
current signals. Also, the current signal is load dependent: the 
load variation may lead to misclassification; for instance, light 
load operation as reported in [11].  
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Fig. 2. (a) Single-phase multilevel-inverter system; (b) Multilevel carrier-
based sinusoidal PWM showing carrier bands, modulation waveform, and 

inverter output waveform (ma = 0.8/1.0). 

 Fig. 3. Input motor currents during open circuit fault at switch SA+ of  
H-bridge 2. 

 (a) 

(b) 
Fig. 4. Input motor currents during open circuit fault at H-bridge 1:  

(a) switch SA+, (b) switch SB+.
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Auspiciously, Fig. 2 indicates that an output phase PWM 
voltage is related to turn-on and turn-off time of associated 
switches; hence, a faulty switch can not generate a desired 
output voltage. The output voltage for a particular switch is 
zero if the switch has a short circuit fault, whereas the output 
voltage is about Vdc of SDCS if the switch has an open circuit 
fault. For this reason, the output phase voltage can convey 
valuable information to diagnose the faults and their locations. 
The simulation results of output voltages are shown for an 
MLID with open circuit faults and short circuit faults in Fig. 5. 
One can see that all fault features in both open circuit and short 
circuit cases could be visually distinguished.  

Also, experimental results of output voltage signals of open 
circuit faults in each location of two SDCS MLID (Fig. 2) with 
multilevel carrier-based sinusoidal PWM gate drive signals are 
shown in Fig. 6 (H-bridge 1) and Fig. 7 (H-bridge 2). Output 
voltage signals are obviously related to the fault locations. Also, 
the output voltages of a MLID can also be used to diagnose the 
fault types (open and short circuit); therefore, we will attempt 
to diagnose the fault types and fault locations in a cascaded 
MLID from its output voltage waveform.  
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Fig. 5. Simulation of output voltages signals (a) open circuit faults,  
 (b) short circuit faults showing fault features at SA+, SA-, SB+, and SB- of  

H-bridge 2 with modulation index = 0.8 out of 1.0. 

          
                             (a) 

                              (b)                                                    (c)  

                              (d)                                                (e)  

Fig. 6. Experiment of fault features at (a) normal,  (b) SA+ fault, (c) SA- fault,
(d) SB+ fault, and  (e) SB- fault of H-bridge 1 with modulation index = 0.8 out 

of 1.0. 

                              (a)                                                          (b)  

                              (c)                                                           (d)  

Fig. 7. Experiment of fault features at   (a) SA+ fault, (b) SA- fault,  (c) SB+ fault, 
and  (d) SB- fault of H-bridge 2 with modulation index = 0.8 out of 1.0. 
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III. FAULT DIAGNOSTIC METHODOLOGY

It is possible that artificial intelligent (AI) based techniques 
can be applied in condition monitoring and diagnosis. AI-based 
condition monitoring and diagnosis have several advantages. 
For instance, AI-based techniques do not require any 
mathematical models; therefore, the engineering time and 
development time could be significantly reduced [12]. The 
methodology of fault diagnostic system using AI has been 
reported in [13-15] and will not be repeated here.  The 
discussion of AI presented in this section will be brief, 
providing only the indispensable notion to elucidate the 
fundamental AI-based approach applied to a fault diagnosis 
system in a MLID.  

First, the feature extraction of the output voltage signals is 
performed by using FFT; then, the principal component 
analysis (PCA) is used in the feature extraction process. PCA 
offers a lower dimensional input space which will also usually 
reduce the time necessary to train a neural network, and the 
reduced noise (by keeping only valuable principal components 
(PCs)) may improve the mapping performance [14]. Next, 
genetic algorithm (GA) is applied to search for the best 
combination of PCs to train the neural network as explained in 
[15].  The output of GA is the best combination of PCs which 
provide the weight and bias matrix of neural networks used for 
classification task. After that, the weight and bias matrix of the 
neural networks will be implemented in Simulink interfacing 
with FFT and PCA subsystem as shown in Fig. 8.  It should be 
mentioned that PCA and GA process will perform off-line to 
achieve the best combination of PCs.  

Before continuing discussion, it should be mentioned that 
the methodology of fault diagnosis presented in [14-15] can be 
applied to any other cascaded H-bridges MLID. However, 
some minor processes are different such as neural network 
structure, input/output data set, and principal component (PC) 
selection. Since the simulation and experiment validation will 
be performed with 11-level MLID, the fault diagnostic 
processes for the 11-level MLID are explained in the following. 

A. Neural Network Structure 
The fault diagnostic diagram for an 11-level MLID with 5 

SDCS is depicted in Fig. 8. The neural network classification 
process consists of two networks: open circuit network and 
short circuit network.  The training time and required memory 
for implementation are reduced with the segregated neural 
network as reported in [16, 17]. Moreover, in this particular 
case, the short circuit data set includes the loss of separate dc 
source (SDCS) condition due to the fuse protection because the 
fuse may blow before the fault is detected; therefore, the short 
circuit neural network may contain more complexity than the 
open circuit neural network. Also, the neural networks may be 
assigned to have the ability to provide “do not know” 
conditions. The multilayer feedforward perceptron (MLP) 
networks are used in both open circuit and short circuit neural 
networks. The neural network architecture is based upon GA 
selection as discussed in [15]. The input neurons depend on 
GA selection; however, the one hidden layer with 4 hidden 
nodes and 6 output nodes are assigned.    

B.  Input/Output Data 
The input/output data set diagram for 11-level MLID is 

illustrated in Fig. 9. We can see that the set of original input 
data set at each MLID operation point (modulation index) 
contains five fault classes: normal, Fault A+, A-, B+, and B-. 
Modulation indices (ma) are observations changing with 
desired load. In this particular case, ma is varied from 0.6 to 1.0 
with 0.05 intervals. The original data are divided into two 
subsets: Open circuit and short circuit. Also, each subset is 
separated to one training set and two testing sets as shown in 
Fig. 9.  Both open circuit and short circuit neural networks are 
trained with both open and short circuit training sets. However, 
the open circuit neural network will be trained with short 
circuit training set with “do not know” target binary and vice 
versa with the short circuit neural network as depicted in Fig. 9. 
 Target binary variables are also illustrated in Table I. Six 
binary bits are used to code the input/output mapping. The first 
two bits (counting from the right bits 0 and 1) are utilized to 
code the faulty switches, the 3rd bit from the right (bit 2) is 
used to code the fault type, and the last three bits (bits 3, 4, and 
5) are used to code which cell has faulted. Also, the code [1 1 1 
1 1 1] is used to represent the normal condition, whereas the 
code [0 0 0 0 0 0] is used to characterize the “do not know” 
condition. Therefore, the six output neurons are used for 
particular 11-level MLID. For instance, if the neural network 
provides [ 0 1 1 0 0 1] as the outputs, we can decode the fault 

Fig. 9. Training and testing data set diagram. 

Fig. 8. Fault diagnostic diagram for 11-level MLID with 5 SDCS. 
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type and  location as cell 3 is faulty with open circuit fault at 
switch SA-.  This decoder paradigm can be implemented in 
Simulink model by using 2-D dimension look-up table as 
shown in Fig. 8.   

The output binaries provided by the neural networks are also 
required to give the same classification results for two 
consecutive times with the same input voltage signal. If the 
network provides the different classification results, the 
reconfiguration process will not perform, and then a new cycle 
of the voltage signal is required for another classification 
process. This process provides more confidence of the 
classification result before taking an action. Also, the detection 
process will allow the diagnostic system to acquire the output 
voltage signal only two times for short circuit cases and three 
times for open circuit cases. This means if the detection 
process can not give repeatable results, an operator will be 
notified, and then emergency action will be performed. 

C.  Principal Component Selection 
By using the methodology proposed in [15], the principal 

components (PCs) selected by genetic algorithm (GA) are 
represented in Table II. As can be seen, 8 PCs are selected for 
open circuit neural network, whereas 11 PCs are chosen for 
short circuit neural networks. Also, the same PCs (1, 2, 3, 5, 7, 
8, 13, and 14) as presented in [15] are selected for open circuit 
fault neural network. Conversely, the GA chooses different 
PCs (2, 3, 4, 5, 7, 8, 9, 11, 12, 13, and 14) for short circuit 
neural networks. It should be noted that the training data for 
short circuit neural network also includes the short circuit fault 
for loss of SDCS conditions. Interestingly, we know that PC 1 
corresponds to the dc component of MLID’s output voltages, 
and this dc component will naturally increase during faulty 
conditions as explained in [14]. However, GA did not select 
PC 1 for short circuit neural network. This result suggests that 
the PC 1 is not so important for short circuit neural network 
which includes training data of short circuit fault during loss of 
SDCS conditions.  Therefore, the neural network architecture 
for open circuit neural network has 8 input neurons, 4 hidden 
neurons and 6 output neurons, whereas the short circuit neural 
network architecture has 11 input neurons, 4 hidden neurons 
and 6 output neurons. 

IV. SIMULATION AND EXPERIMENT SETUP

A.  Simulation Setup 
Two simulation programs are used in the simulation setup: 

Matlab-Simulink and PSIM. Matlab-Simulink is used to 
implement feature extraction (FFT and PCA), neural network 
classification, and reconfiguration. A reconfiguration is 
corrective method to continuously operate a MLID after the 
faults are detected. The reconfiguration technique used in this 
research has been proposed in [18]. PSIM is used to implement 
the MLID power circuit. The reason for using PSIM is that it is 
a circuit-based simulation software and it conveniently 
interfaces with Matlab-Simulink via the toolbox called 
Simcouple [19]. The simulation validation based on Simulink 
is illustrated in Fig. 10.  It should be noted that the same 
Simulink model is used in both simulation and experiment.  

B. Experimental Setup 
The experimental setup is represented in Fig. 11. A three-

phase wye-connected cascaded multilevel inverter using 100 V, 
70 A MOSFETs as the switching devices is used to produce 
the output voltage signals. The MLID supplies an induction 
motor (1/3 hp) coupled with a dc generator (1/3 hp) as a load 
of the induction motor. The Opal RT-Lab system [20] is 
utilized to generate gate drive signals and interfaces with the 
gate drive board. The switching angles are calculated by using 
Simulink model based on multilevel carrier-based sinusoidal 
PWM with 2 kHz switching frequency. A separate individual 
power supply acting as SDCS is supplied to each cell of the 
MLID, consisting of 5 cells per phase as shown in Fig. 1. Open 
and short circuit fault occurrences are created by physically 
controlling the switches in the fault creating circuit. A 
Yokogawa DL 1540c is used to measure output voltage signals 
as ASCII files. Voltage spectrum is calculated and transferred 
to the Opal-RT target machine. 

V. SIMULATION AND EXPERIMENTAL RESULTS

A. Open Circuit Case 
The simulation and experimental results are shown in Fig. 12. 

The faulty power cell (SA+) was placed at cell 2 on phase A 

TABLE I.
TARGET BINARY CODE FOR 11-LEVEL MLID. 

Number of binary bits and their description 
Faulty cell Fault type Faulty switch Condition 

5 4 3 2 1 0 
Normal 1 1 1 1 1 1 

1 0 0 1 - - - 
2 0 1 0 - - - 
3 0 1 1 - - - 
4 1 0 0 - - - 

Faulty cells 

5 1 0 1 - - - 
open - - - 0 - - Fault types 
short - - - 1 - - 

Fault A+ - - - - 0 0 
Fault A- - - - - 0 1 
Fault B+ - - - - 1 0 

Faulty 
switches 

Fault B- - - - - 1 1 
“Do not know” 0 0 0 0 0 0 

TABLE II.
PRINCIPAL COMPONENTS SELECTED BY GA FOR 11-LEVEL MLID. 

Neural 
networks Description Outputs from gatool 
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(see Fig. 1), and the multilevel inverter drive was operating at 
0.8/1.0 modulation index before the fault occurs. We can see 
that the simulation and experimental results agree with each 
other. The fault diagnostic system requires about 6 cycles 
(~100 ms at 60 Hz) to clear the open circuit fault. Obviously, 
the open circuit fault causes unbalanced output voltage (Van) of 
the MLID during the fault interval, and the average current on 
phase A (Ia) has negative polarity during the fault interval. 
B. Short Circuit Case 

The faulty power cell (SA+) of short circuit case was placed 
at power cell 3 on phase A (see Fig. 1), and the multilevel 
inverter drive was operating at 0.8/1.0 modulation index before 
the fault occurs. The simulation results of a short circuit fault at 
cell 3 switch SA+ are represented in Fig. 13. The fault 
diagnostic system also requires about 6 cycles to clear the short 
circuit fault. Obviously, the output voltage (Van) of the MLID 
is unbalanced during the fault interval (lost negative voltage at 
phase A), and the average current on phase A (Ia) has positive 
polarity during the fault interval. The peak of the fault current 

increases about 1.5 times compared with the normal operation. 
It should be noted that practically, the fuse protecting the 
SDCS may blow (disconnect the SDCS from a MLID) before 
the diagnostic system performs fault clearing so that the output 
phase-voltage will be zero. This behavior of output phase-
voltage signals should be taken into account for training the 
neural network as explained in section III.  

The proposed diagnostic system can also detect a short fault 
under the loss of SDCS condition as the faulty cell condition as 
shown in Fig. 14. The clearing time for this particular case is 
about 9 cycles. Also, we found that the neural network can 
detect which cell has a fault and whether the switch was 
connected to the positive bus (SA+ or SB+) or the negative bus 
(SA- or SB-). However, the neural network could not determine 
which specific switch (SA+ or SB+) or (SA- or SB-) had failed. 
Nevertheless, the proposed corrective action taken as explained 
in [18] can still solve this problem because the fault 
occurrences at switch SA+ and SB+ has the same corrective 
action taken.  The faults at SA- or SB- also have the same 
corrective action taken as clearly explained in [18].  

The clearing time of a short circuit fault under the loss of 
SDCS at faulty cell condition is longer than the open circuit 
and short circuit faults by about 3 cycles. This result suggests 
that using only the output voltage signals in the loss of SDCS 

Step SimCoupler_R11

INV_A

INV_B

INV_C

Neural network 
fault Classification

In1

s51
s52
s41
s42
s31
s32
s21
s22
s11
s12

In1

s51
s52
s41
s42
s31
s32
s21
s22
s11
s12

In1

s51
s52
s41
s42
s31
s32
s21
s22
s11
s12

Gate s ignals of Phase_A

Phase Voltage

Current

3
INV_C

2
INV_B

1
INV_A

f_a
f_b
f_c

fault
faul t

Signal

fs

fau lt

INVC5

INVC4
INVC3

INVC2
INVC1

check fault  C

Signal

fs

fau lt

INVB5

INVB4
INVB3

INVB2
INVB1

check fault B

Signal

fs

fau lt

INVA5
INVA4

INVA3

INVA2
INVA1

check faul t A

fault

A
B
C

fs
Signal5Level

Gate signals  of Phase_B

Gate signa ls of Phase_B

Power circuit of MLID by PSIM

In
te

rf
ac

e 
to

 P
SI

M

Sh
ow

in
g 

th
e 

su
b-

sy
st

em
 

in
si

de

Fig. 10. The fault diagnostic system interfaced with PSIM performing 
power circuit of a MLID. 

Fig. 11. Experimental setup. 

(a) 

(b) 
Fig. 12. Results of the open circuit fault at SA+, cell 2 of the MLID during 

operation at ma = 0.8/1.0: (a) Simulation of current waveforms, (b) 
Experimental result showing line current (Ia ) at the faulty phase. 
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case may not adequately provide the unique feature to detect 
the faults. Therefore, the current signals can be used to 
determine the different neural network because Fig. 4 shows 
that the current polarity of the faulty cell can be used to 
classify the faults at positive or negative dc bus. 

VI. PERFORMANCE VALIDATION

The performance investigation of the proposed diagnostic 
and reconfiguration system is also evaluated. The objective of 
this performance investigation is to evaluate the fault clearing 

times. The procedure used for this particular investigation is 
that the MLID was operating at different load and fault 
conditions and each condition was performed five times. The 
average, maximum, and minimum clearing time consumed by 
the proposed system are reported in Table III. As can be seen, 
the proposed system can detect and reconfigure at different 
fault types and loads. The current waveforms of the MLID 
operating under several load conditions are illustrated in Fig. 
15 and Fig 16. The consumed time of classification and 
reconfiguration algorithm can be estimated by subtracting the 
one cycle delay time required by FFT function. The average 
consumed time of the algorithm is about 84 ms. We know that 
the cascaded MLID can tolerate a few cycles of faults; 
therefore, the detection and reconfiguration system may not 
need to be very fast execution.  

It should be noted that this proposed system was 
implemented in Opal-RT system. The clearing time can be 
shorter than this if the proposed system is implemented as a 
single chip using an FPGA or DSP. However, the proposed 
system can detect the fault and can correctly reconfigure the 
malfunctioning MLID. This shows that the proposed diagnostic 
and reconfiguration paradigm can be applied to MLID 
applications. Also, by using the proposed system, the reliability 
of the MLID system can be increased.  

VII. CONCLUSION

The ability of cascaded H-bridge multilevel inverter drives 
(MLID) to operate under faulty condition with AI-based fault 
diagnosis and reconfiguration system has been proposed. The 
proposed fault diagnostic paradigm has been validated in both 
simulation and experiment. 

The fault diagnostic system requires about 6 cycles (~100 ms
at 60 Hz) to clear the open circuit fault and about 9 cycles 
(~150 ms at 60 Hz) to clear short circuit fault with loss of 
SDCD. The experiment and simulation results in both open 
circuit fault and short circuit fault with loss of SDCS are in 
good agreement with each other. The proposed system can 
detect the fault and can correctly reconfigure the 
malfunctioning MLID. The results show that the proposed 
diagnostic and reconfiguration paradigm can be applied to 
MLID applications. Also, by using the proposed system, the 
reliability of the MLID system can be increased. 

Fig. 13. Simulation results of the short circuit fault at SA+, cell 3 of the MLID 
during operated at ma = 0.8/1.0. 

(a) 

(b) 
Fig. 14. Results of the short circuit fault at SA+, cell 3 under loss of SDCS 

condition at the faulty cell of the MLID during operated at ma = 0.8/1.0: (a) 
simulation, (b) experiment showing line current (Ia ) at the faulty phase. 

TABLE III.
PERFORMANCE  VALIDATION.

Multilevel inverter drive at different operating points 

Fault clearing time (ms) Fault Types Current 
(A) ma Frequency 

Average Min Max 

Open circuit 
fault at  Switch 

SB+ of Cell 3 

1.56 
2.83 
2.26 
2.82 

1.0/1.0 
0.9/1.0 
0.8/1.0 
0.6/1.0 

80 Hz 
60 Hz 
30 Hz 
15 Hz 

95.8 
100 

117.2 
150 

87.5 
83.3 
100 

133.3 

112.5 
133.3 
166.6 
200 

Loss of gate 
drive fault at  
Switch SA+ of

Cell 3 

1.56 
2.83 
2.26 
2.82 

1.0/1.0 
0.9/1.0 
0.8/1.0 
0.6/1.0 

80 Hz 
60 Hz 
30 Hz 
15 Hz 

96.25 
100 

126.7 
166.6 

87.5 
83.3 
100 

133.3 

112.5 
116.6 
166.6 
266.6 

Short circuit at 
switch SA- of 

Cell 2

1.56 
2.83 
2.26 
2.82 

1.0/1.0 
0.9/1.0 
0.8/1.0 
0.6/1.0 

80 Hz 
60 Hz 
30 Hz 
15 Hz 

145.8 
150 

166.7 
200 

137.5 
133.3 
133.3 
133.3 

162.5 
166.7 
200 

333.3 
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Fig. 15. Operation under open circuit fault condition with different 
frequencies. 

Real open circuit fault at cell 3 S B+

Loss of gate drive fault at cell 3 SA+

Short circuit fault with loss of SDCS at cell 2 SA-

5mV/1A  (2A/Div)

Fig. 16. Operation under different fault type at 60 Hz. 
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