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Abstract—A differential-algebraic method is used to estimate
the rotor time constant TR of an induction motor without
measurements of the rotor speed/position. The method consists
of solving for the roots of a polynomial equation in TR whose
coefficients depend only on the stator currents, stator voltages,
and their derivatives. Experimental results are presented.

Index Terms—Rotor Time Constant, Sensorless Speed Ob-
server, Induction Motor.

I. INTRODUCTION
Induction motors are very attractive in many applications

owing to their simple structure, low cost, and robust con-
struction. Field-oriented control is now used to obtain high
performance drive of the induction motor because it gives
control characteristics similar to separately excited DC mo-
tors. Implementation of a (rotor-flux) field-oriented controller
requires knowledge of the rotor speed and the rotor time
constant TR to estimate the rotor flux linkages. There has
been considerable work done in the last several years to im-
plement a field-oriented controller without the use of a speed
sensor [1][2][3][4][5][6]. However, many of these methods
still require the value of TR, which can change with time
due to ohmic heating; that is, to be able to update the value
of TR to the controller as it changes is valuable. The work
presented here uses an algebraic approach to identify the rotor
time constant TR without the motor speed information. It is
most closely related to the ideas described in [7][8][9][10][11].
Specifically, it is shown that TR satisfies a polynomial equation
whose coefficients are functions of the stator currents, the
stator voltages, and their derivatives. A zero of this polynomial
is the value of TR. It is further shown TR is not identifiable
by this technique under steady-state conditions. It is also
true (and shown here) that a standard least-squares approach
cannot identify TR under steady-state conditions. In [4], the
speed ω and TR are identified assuming constant speed but
not (sinusoidal) steady state. In [12], the speed is assumed
constant, but the flux magnitude is perturbed by a small
amplitude sinusoidal signal to identify TR.
The paper is organized as follows. Section II introduces

a space vector model of the induction motor. Section III uses
this model to develop a differential-algebraic equation that TR
must satisfy. Section IV shows that in steady state, TR is not
identifiable by either the differential-algebraic method nor a
standard linear least-squares method. Section V presents the
experimental results, while Section VI gives the conclusions
and future work.

II. MATHEMATICAL MODEL OF INDUCTION MOTOR

The starting point of the analysis is a space vector model
of the induction motor given by (see e.g., pp. 568 of [13])
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where iS , iSa + jiSb, ψR , ψRa + jψRb, and uS , uSa +
juSb. Here, θ is the position of the rotor, ω = dθ/dt is the
rotor speed, np is the number of pole pairs, iSa, iSb are the
(two-phase equivalent) stator currents, ψRa, ψRb are the (two-
phase equivalent) rotor flux linkages, RS , RR are the stator
and rotor resistances, respectively,M is the mutual inductance,
LS and LR are the stator and rotor inductances, respectively, J
is the moment of inertia of the rotor, and τL is the load torque.

The symbols TR =
LR
RR

, σ = 1 − M2

LSLR
, β =

M

σLSLR
,

γ =
RS

σLS
+
βM

TR
have been used to simplify the expressions.

TR is referred to as the rotor time constant, while σ is called
the total leakage factor.

III. DIFFERENTIAL-ALGEBRAIC APPROACH TO TR
ESTIMATION

The idea of the differential-algebraic approach is to solve
(1) and (2) for TR [14][15]. However, equations (1) and (2)
are only four equations while there are six unknowns, namely
ψRa, ψRb, dψRa/dt, dψRb/dt, ω, and TR. Equation (3) is not
used because it introduces the additional unknown τL. To find
two more independent equations, equation (1) is differentiated
to obtain
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Using the (complex-valued) equations (1) and (2), one can
solve for ψ

R
and

d
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R
in terms of ω, iS and uS and substitute
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the resulting expressions into (4) to obtain
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Solving (5) for dω/dt gives
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The left-hand side of (6) is real, so the right-hand side must
also be real. Note by (1) that diS/dt + γiS − uS/ (σLS) =
β
TR
(1− jnPωTR)ψR so that the right-hand side of (6) is

singular if and only if
¯̄̄
ψ
R

¯̄̄
= 0. Other than at startup,¯̄̄

ψ
R

¯̄̄
6= 0 in normal operation of the motor. Separating the

right-hand side of (6) into its real and imaginary parts, the
real part has the form
dω

dt
= a2 (uSa, uSb, iSa, iSb)ω

2 + a1 (uSa, uSb, iSa, iSb)ω

+a0 (uSa, uSb, iSa, iSb) . (7)

The expressions for a2 (uSa, uSb, iSa, iSb) , a1(uSa, uSb, iSa,
iSb), and a0 (uSa, uSb, iSa, iSb) are lengthy in terms of uSa,
uSb, iSa, iSb, and their derivatives as well as of the machine
parameters including TR. As a consequence, they are not
explicitly presented here. Their steady-state expressions are
given in [6].
On the other hand, the imaginary part of the right-hand

side of (6) must be zero. In fact, the imaginary part of (6) is
a second degree polynomial equation in ω of the form

q(ω) , q2(uSa, uSb, iSa, iSb)ω
2 + q1(uSa, uSb, iSa, iSb)ω

+q0(uSa, uSb, iSa, iSb) (8)

and, if ω is the speed of the motor, then q(ω) = 0. The
qi are functions of uSa, uSb, iSa, iSb, and their derivatives
as well as of the machine parameters including TR. The
expressions for q2(uSa, uSb, iSa, iSb), q1 (uSa, uSb, iSa, iSb) ,
and q0(uSa, uSb, iSa, iSb) are also lengthy and not explicitly
presented here. (Their steady-state expressions are given in
[6].) If the speed was measured, then (8) would be equal to
zero and could then be solved for TR. However, in the problem
being considered, ω is not known. To eliminate ω, q(ω) in (8)
is differentiated to obtain

d

dt
q(ω) = (2q2ω + q1)

dω

dt
+ q̇2ω

2 + q̇1ω + q̇0 (9)

where dq(ω)/dt ≡ 0 if ω is equal to the motor speed. Next,
dω/dt in (9) is replaced by the right-hand side of (7) so that

(9) may be written as
dq(ω)

dt
= g(ω) , 2q2a2ω3 + (2q2a1 + q1a2 + q̇2)ω

2

+(2q2a0 + q1a1 + q̇1)ω + q1a0 + q̇0. (10)

g(ω) is a third-order polynomial equation in ω for which the
speed of the motor is one of its zeros. Dividing1 g(ω) in (10)
by q(ω)2 in (8), g(ω) may be rewritten as

g(ω) =
1

q2

³
(2q2a2ω + 2q2a1 − q1a2 + q̇2) q(ω)

+r1 (uSa, uSb, iSa, iSb)ω + r0 (uSa, uSb, iSa, iSb)
´
(11)

r1 (uSa, uSb, iSa, iSb) , 2q22a0 − q2q1a1 + q2q̇1 − 2q2q0a2
+q21a2 − q1q̇2 (12)

r0 (uSa, uSb, iSa, iSb) , q2q1a0 + q2q̇0 − 2q2q0a1
+q0q1a2 − q0q̇2. (13)

If ω is equal to the speed of the motor, then both g(ω) = 0
and q(ω) = 0, and one obtains

r(ω) , r1 (uSa, uSb, iSa, iSb)ω + r0 (uSa, uSb, iSa, iSb) = 0.
(14)

This is now a first-order polynomial equation in ω which
uniquely determines the motor speed ω as long as r1 (the
coefficient of ω) is nonzero. (It is shown in Appendix VII-A
that r1 6= 0 in steady state.) Solving for the motor speed ω
using (14), one obtains

ω = −r0/r1. (15)

Next, replace ω in (8) by the expression in (15) to obtain

q2r
2
0 − q1r0r1 + q0r

2
1 ≡ 0. (16)

The expressions for qi, ri are in terms of motor parameters
(including TR) as well as the stator currents, voltages, and
their derivatives. Expanding the expressions for q0, q1, q2, r0,
and r1, one obtains a twelfth-order polynomial equation in
TR, which can be written as

12X
i=0

Ci (uSa, uSb, iSa, iSb)T
i
R = 0. (17)

Solving equation (17) gives TR. The coefficients
Ci (uSa, uSb, iSa, iSb) of (17) contain third-order derivatives
of the stator currents and second-order derivatives of the stator
voltages making noise a concern. For short time intervals in
which TR does not vary, (17) must hold identically with TR
constant. In order to average out the effect of noise on the
Ci, (17) is integrated over a time interval [t1, t2] to obtain

12X
i=0

µ
1

t2 − t1

Z t2

t1

Ci (uSa, uSb, iSa, iSb) dt

¶
T i
R = 0. (18)

1Given the polynomials g(ω), q(ω) in ω with deg{g(ω)} =
ng ,deg{q(ω)} = nq , the Euclidean division algorithm ensures that there
are polynomials γ(ω), r(ω) such that g(ω) = γ(ω)q(ω) + r(ω) and
deg{r(ω)} ≤ deg{q(ω)} − 1 = nq − 1. Consequently if, for example,
ω0 is a zero of both g(ω) and q(ω), then it must also be a zero of r(ω).
2q2 6= 0 if ω and the stator electrical frequency ωS are nonzero, which

hold under normal operating conditions. See [6][16].
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There are 12 solutions satisfying (18). However, simulation
results have always given 10 conjugate solutions. The remain-
ing two solutions include the correct value of TR while the
other one was either negative or close to zero. The method is to
compute the coefficients 1

t2−t1
R t2
t1

Cidt and then compute the
roots of (18). Among the positive real roots is the correct value
of TR. Experimental results using this method are presented
in Section V.

IV. IDENTIFIABILITY OF TR IN STEADY STATE
A. Differential-algebraic approach
The polynomial (18) is now considered with the machine in

steady state so that, in particular, the speed is constant. That
is, uSa + juSb = USe

jωSt and iSa + jiSb = ISe
jωSt are

substituted into (8) and (14) . In steady state, the motor speed
in (15) becomes (see Appendix VII-A and [16])

ω = −r0
r1
=

ωS (1− S)

np
(19)

where S , (ωS−npω)/ωS is the normalized slip and ωS is the
electrical frequency. Substituting the steady-state expressions
for q2, q1, and q0 as well as the expression (19) for ω into
(8) , one obtains q2ω2 + q1ω + q0 =

n2pT
2
R |IS |4 ω2SLS (1− σ)2 (1− S)

σ (1 + S2ω2ST
2
R)

µ
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³
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2
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´
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2
R)

×
µ
ωS (1− S)
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¶
− |IS |

4
ω2SLS (1− σ)

2
(1− S)

σ (1 + S2ω2ST
2
R)

≡ 0.

That is, in steady state (8) and (14) hold independent of the
value of TR and thus so does (17) making TR unidentifiable
in steady state by this method.

B. Linear least-squares approach
Vélez-Reyes et al [3][4] have used least-squares methods for

simultaneous parameter and speed identification in induction
machines. In the approach used herein, dω/dt is taken to be
zero so that a linear (in the parameters) regressor model can be
obtained. Specifically, consider the mathematical model of the
induction motor in (5). Assuming constant speed, dω/dt = 0
so that this equation reduces to
d2

dt2
iS = − 1
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µ
d
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iS + γiS −
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¶
+
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iS +

1

σLS

d

dt
uS

(20)

where iS = iSa + jiSb and uS = uSa + juSb. Decomposing
equation (20) into its real and imaginary parts gives
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1
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1
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¶
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1

σLS
uSa

¶
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+
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σLS
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The goal here is to estimate TR without knowledge of ω. So, it
is now assumed the motor parameters are all known except for
TR. The set of equations (21) and (22) may then be rewritten
in regressor form as

y (t) =W (t)K (23)

where K ∈ R2, y ∈ R2, and W ∈ R2×2 are given by

K ,
·
1/TR
npω

¸
,

y (t),


duSa
dt
− σLS

d2iSa
dt
−RS

diSa
dt

duSb
dt
− σLS

d2iSb
dt
−RS

diSb
dt

,

W (t) ,


LS

diSa
dt
− uSa +RSiSa σLS

diSb
dt
− uSb +RSiSb

LS
diSb
dt
− uSb +RSiSb −σLS diSa

dt
+ uSa −RSiSa

 .
The regressor system (23) is linear in the parameters. The
standard linear least-squares approach is to let (i.e., collect
data at) t = 0, T, 2T, · · · , NT , multiply (23) on the left by
WT (nT ), sum WT (nT )y (nT ) = WT (nT )W (nT )K from
t = 0 to t = NT , and finally compute the solution to

RWK = RYW (24)

where

RW ,
NX
n=0

WT (nT )W (nT ), RYW ,
NX
n=0

WT (nT )y (nT ) .

A unique solution to (24) exists if and only if RW is invertible.
However, RW is never invertible in steady state as is now
shown. To proceed, define

D (t) =

·
iSb (t) −iSa (t)
iSa (t) iSb (t)

¸
.

In steady state where uSa + juSb = USe
jωSt and iSa +

jiSb = ISe
jωSt, det(D (t)) = i2Sa (t) + i2Sb (t) = |IS |2 ,

D (t)TD (t) = |IS |2 I2×2. Multiply both sides of (23) on the
left by D (t) to obtain

D (t) y (t) = D (t)W (t)K

or ·
RSωS |IS |2 − ωSP

σLSω
2
S |IS |2 − ωSQ

¸
=· −ωSLS |IS |2 +Q RS |IS |2 − P

RS |IS |2 − P σLSωS |IS |2 −Q

¸
K (25)
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where P , uSaiSa + uSbiSb and Q , uSbiSa − uSaiSb are
the real and reactive powers, respectively, whose steady-state
expressions are given by (30) and (31) in the Appendix. Using
(30) and (31) to replace P and Q in (25), one obtains

D̄ , D (t)W (t)

= − |IS |
2 (1− σ)ωSLS
1 + S2ω2ST

2
R

·
S2ω2ST

2
R SωSTR

SωSTR 1

¸
(26)

Ȳ , D (t) y (t)

= −ωS |IS |
2 (1− σ)ωSLS
1 + S2ω2ST

2
R

·
SωSTR
1

¸
. (27)

That is, in steady state, D̄ , D (t)W (t) ∈ R2×2 and Ȳ ,
D (t) y (t) ∈ R2 are constant matrices. Further, it is easily
seen that the determinant of D̄ , D (t)W (t) is zero. Also,

RDW ,
NX
n=1

(D (nT )W (nT ))T (D (nT )W (nT )))

= |IS |2
NX
n=1

WT (nT )W (nT ) = |IS |2RW .

RDW is singular because D (t)W (t) is constant and singular.
It then follows that RW is also singular using steady-state data.
Further,

RDWY ,
NX
n=1

(D (nT )W (nT ))
T
(D (nT ) y (nT )))

= |IS |2
NX
n=1

WT (nT )y (nT ) = |IS |2RYW .

Thus RW and RYW are given by

RW = RDW / |IS |2 = ND̄T D̄/ |IS |2

=
N |IS |2 (1− σ)

2
ω2SL

2
S

1 + S2ω2ST
2
R

·
S2ω2ST

2
R SωSTR

SωSTR 1

¸
(28)

RYW = RDWY / |IS |2 = ND̄T Ȳ / |IS |2

= ωS
N |IS |2 (1− σ)

2
ω2SL

2
S

1 + S2ω2ST
2
R

·
SωSTR
1

¸
, (29)

where again D̄ and Ȳ are from (26) and (27), respectively.
By inspection of (28) and (29), K = [0 ωS ]

T is one
solution to (24). The null space of RW is generated by
[−1/TR SωS ]

T so that all possible solutions are given by
[0 ωS ]

T + α [−1/TR SωS ]
T for some α ∈ R. In summary,

solving (24) using steady-state data leads to an infinite set
of solutions so that TR is not identifiable using the linear
regressor (23) with steady-state data.

V. EXPERIMENTAL RESULTS
To demonstrate the viability of the speed sensorless estima-

tor (18) for TR, experiments were performed. A three-phase,
0.5 hp, 1735 rpm (np = 2 pole-pair) induction motor was
driven by an ALLEN-BRADLEY PWM inverter to obtain the
data. Given a speed command to the inverter, it produces PWM

voltages to drive the induction motor to the commanded speed.
Here a step speed command was chosen to bring the motor
from standstill up to the rated speed of 188 rad/s. The stator
currents and voltages were sampled at 10 kHz. The real-time
computing system RTLAB from OPAL-RT with a fully inte-
grated hardware and software system was used to collect data
[17]. Filtered differentiation (using digital filters) was used
for the derivatives of the voltages and currents. Specifically,
the signals were filtered with a third-order Butterworth filter
whose cutoff frequency was 100 Hz. The voltages and currents
were put through a 3− 2 transformation to obtain their two-
phase equivalent values.
Using the data {uSa, uSb, iSa, iSb} collected between

0.84 sec to 0.91 sec, which includes the time the motor ac-
celerates, the quantities duSa/dt, duSa/dt, diSa/dt, diSb/dt,
d2iSa/dt

2, d2iSb/dt
2, d3iSa/dt

3, d3iSb/dt
3 are calculated

and used to evaluate the coefficients Ci, i = 1, 2, · · · , 12 in
equation (18) . Solving (18) , one obtains the 12 solutions

TR1 = +0.1064 TR2 = −0.0186
TR3 = −0.0576 + j0.0593 TR4 = −0.0576− j0.0593
TR5 = −0.0037 + j0.0166 TR6 = −0.0037− j0.0166
TR7 = −0.0072 + j0.0103 TR8 = −0.0072− j0.0103
TR9 = +0.0125 + j0.0077 TR10 = +0.0125− j0.0077
TR11 = +0.0065 + j0.0018 TR12 = +0.0065− j0.0018.

TR must be a real positive number, so TR = 0.1064 is the
only possible choice. This value compares favorably with the
value of TR = 0.11 obtained using the method of Wang et al
[18], which requires a speed sensor.
To illustrate the identified TR, a simulation of the induction

motor model was carried out using the measured voltages as
input. Then the simulation’s output [stator currents computed
according to (1) and (2)] are used to compare with the
measured (stator currents) outputs. Figure 1 shows the sampled
two-phase equivalent current iSb and its simulated response
iSb−sim. The phase a current iSa is similar, but shifted by
π/ (2np) . The resulting phase b current iSb−sim from the
simulation corresponds well with the actual measured current
iSb. Note that in equation (1) γ =

RS

σLS
+

βM

TR
also depends

on TR.

VI. CONCLUSIONS AND FUTURE WORK

This paper presented a differential-algebraic approach to
the estimation of the rotor time constant of an induction
motor without using a speed sensor. The experimental results
demonstrated the practical viability of this method. Though the
method is not applicable in steady state, neither is a standard
linear least-squares approach. Future work includes studying
an on-line implementation of the estimation algorithm and
using such an online estimate in a speed sensorless field-
oriented controller.

VII. APPENDIX: STEADY-STATE EXPRESSIONS

In the following, ωS denotes the stator frequency and S
denotes the normalized slip defined by S , (ωS − npω) /ωS .
With uSa + juSb = USe

jωSt and iSa + jiSb = ISe
jωSt, it is
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Fig. 1. Phase b current iSb and its simulated response iSb−sim.

shown in [19] that under steady-state conditions, the complex
phasors US and IS are related by (Sp , RR

σωSLR
= 1

σωSTR
)

IS =
US

RS + jωSLS

³³
1 + j S

Sp

´
/
³
1 + j S

σSp

´´
=

US³
RS +

(1−σ)Sω2SLSTR
1+S2ω2ST

2
R

´
+ j

ωSLS(1+σS2ω2ST2R)
1+S2ω2ST

2
R

,

and straightforward calculations (see [6]) give

P , uSaiSa + uSbiSb = Re (USI
∗
S)

= |IS |2
µ
RS +

(1− σ)Sω2SLSTR
1 + S2ω2ST

2
R

¶
(30)

Q , uSbiSa − uSaiSb = Im (USI
∗
S)

= |IS |2
ωSLS

¡
1 + σS2ω2ST

2
R

¢
1 + S2ω2ST

2
R

. (31)

A. Steady-State Expression for r1 and r0
It is now shown that the steady-state value of r1 in (12) is

nonzero. Substituting the steady-state values of q2, q1, q0, a2,
a1, and a0 shown in [6] (noting that q̇1 ≡ 0 and q̇2 ≡ 0 in
steady state) into (12) gives

r1 = − |IS |6
µ

1

1 + S2ω2ST
2
R

¶3 n4p (1− σ)
6
L2S

σ4
×

ω3S

³
1 + T 2Rω

2
S (1− S)

2
´2 1

den

r0 = |IS |6
µ

1

1 + S2ω2ST
2
R

¶3 n3p (1− σ)
6
L2S

σ4
×

ω4S (1− S)
³
1 + ω2ST

2
R × (1− S)

2
´2 1

den
where

den , npTR |IS |4
Ãµ

(1− σ)

σTR

1 + S2ω2ST
2
R − Sω2ST

2
R

1 + S2ω2ST
2
R

¶2
+

µ
(1− σ)

σ

ωS
1 + S2ω2ST

2
R

¶2!
. (32)

Recall from Section III [following (6)] that den = 0 if and
only if

¯̄̄
ψ
R

¯̄̄
= 0. It is then seen that r1 6= 0 in steady state.
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