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Abstract  Reliable electricity has become an essential 

underpinning for national security in modern society. The 
fault-tolerant generic framework proposed herein can 
prevent potential outages from happening through 
intelligent agent coordination. Instead of limiting the 
system to manage existing devices, the developed system is 
adaptive to the future power grid in years to come. This 
paper proposes a hardware-in-the-loop multiagent system 
with embedded models and functions.  
 
Index Terms — multi-agent system, real-time response, 
reconfigurable power grid, collaboration, fault resiliency 

I.  INTRODUCTION 

T he electric power industry in the 21st Century has seen 
dramatic changes in both its physical infrastructure and 
its control and communication/information 

infrastructure. As a result, a shift will take place from a 
relatively few large, concentrated generation centers and the 
transmission of electricity over mostly a high voltage ac grid 
to a more diverse and dispersed generation infrastructure that 
includes renewable or sustainable energy sources [1][2].  

The existing energy management system (EMS) consists of 
three components, the system control and data acquisition 
(SCADA) system, the state estimator (SE), and the 
contingency analysis (CA). SCADA systems serve as both 
data gathering systems as well as device control systems. 
Data are collected from generation plants and substations 
through field remote terminal units (RTUs) and then fed into 
master stations integrated in the control room of each control 
area. The SE is used in the control room to improve the 
accuracy of the raw sampled data by mathematically 
processing raw data to make it consistent with the electrical 
system model. The resulting information for equipment 
voltages and loadings is used in software tools such as CA to 
simulate various conditions and outages to evaluate the 
reliability of the power system.  

However, there exist serious defects in both system-level 
management and device-level design and maintenance. The 
massive power blackout of August 14, 2003 was a wakeup 

call for both the industry and academia to re-think techniques 
that help assure the reliability of the power grid [3].  

At the system level, the control area operators lack the 
capability to 1) obtain real-time status information of the 
equipment, 2) adequately assess the situation and predict 
trends before the fact; 3) respond rapidly enough (within 
milliseconds) once events start to unravel; and 4) perform 
coordinated actions in real time across the region. It is 
astonishing to realize, after the fact, in what an information 
vacuum and outdated power delivery grid the controllers have 
been operating. At the device level, the traditional hardware 
lacks the capability to 1) provide reactive power, frequency 
control, and voltage control according to system needs and 
correspondingly, 2) rapidly reconfigure the system to a 
secure state through disconnect switches, circuit breakers, 
and power-electronics based devices.  

The Electric Power Research Institute (EPRI) estimates 
that the annual economic losses from outages and other 
power quality and reliability events to be 1% of GDP, or 
$100 billion per year [4]. The vulnerability of the power grid 
during the August 14 blackout calls for a re-design of the 
power grid at both the information technology (IT) 
infrastructure level and the device level. Specifically, the 
reformed power grid should satisfy the following five 
requirements: 

First, consider the real time requirement. Some major 
factors that affect the implementation of real-time 
management include the large amount of raw data, the 
complex mathematical modeling, as well as the time-
consuming contingency analysis algorithms. In order to 
achieve real-time operations, intelligence has to be pushed 
toward the device level such that only pre-filtered data and 
local decisions need to be processed at the higher control 
level. In addition, efficient, lightweight, and on-line data 
analysis and decision making algorithms are also desired. 

Second, consider the reactivity requirement. The 
incorporation of Flexible AC Transmission Systems 
(FACTS) devices with appropriate sensing and control 
functions can transform the electric grid into a reconfigurable 
power system where actions can be taken in microseconds to 
control the flow of power and ensure high levels of reliability 
and quality in the power system. _____________________ 
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Third, consider the proactivity requirement. The “proactive 
requirement” is more difficult to satisfy than the 
“contingency requirement” in that it requires the system to be 
able to predict the problem before it actually occurs. On-line 

 



prediction would pose another challenge to the reformed IT 
infrastructure. 

Fourth, consider the collaborative processing requirement. 
Information exchange among hundreds or even thousands of 
distributed generation centers instead of just among a handful 
of large utilities is a new challenge brought by deregulation. 

Finally, consider the fault resiliency requirement. The 
decision making algorithms need to be able to tolerate the 
missing, incomplete, or faulty data and still be able to reach a 
correct decision. We refer to this property as resiliency. 

This paper describes the design of a hardware-in-the-loop 
multi-agent system for resilient, real-time control of the 
reconfigurable power grid. The approach is divided into three 
main tasks that are described in the following sections, 
including the design of multi-agent system architecture, the 
development of an agent-based reconfigurable power 
electronic device, and fault-tolerant collaboration. 

II. THE MULTIAGENT SYSTEM ARCHITECTURE 

There has been an accelerating trend in the integration of 
computing and communication in critical infrastructure 
systems as exemplified in the power grid. As these systems 
become more and more complex, they have to be broken 
down into ‘weakly coupled’ modules, or independent units 
with limited interactions, which can be fully controlled [5]. 

This is the basic philosophy behind the design of object-
oriented languages. In multiagent based systems, the 
emphasis is on the interaction between the agents as well as 
the flexibility (intelligence) carried by the agents. The 
metaphor of local agents negotiating their way to reach an 
equilibrium state is a very natural and attractive one that 
simplifies the understanding of the principles of the system. 
Because of the autonomous nature of agents, they enable the 
utility to do continuous online analysis with every load in the 
entire system.  

A multiagent system is composed of multiple intelligent 
agents interacting with each other through communication 
networks in order to satisfy their design objectives. Each 
intelligent agent is capable of three actions, including 
autonomously responding to the environment (autonomy and 
reactivity), taking initiative steps toward goal implementation 
(proactivity), and interaction with other agents (social 
ability). The development of a multiagent system includes 
both system-level designs and individual agent-level designs. 
In the following two subsections, we will address each in 
detail.   

A. Hybrid Layered Architecture Design for Intelligent Agent 

There have been mainly four categories of agent 
architectures: logic-based, reactive, belief-desire-intention, 
and layered [6]. Due to the nature of the power grid in which 
both reactive and proactive behaviors are desired, a layered 
architecture becomes an appropriate design option. There are 
two types of control flow within the layered architectures, the 
horizontal layering (e.g. TouringMachines [7]) and the 
vertical layering (e.g. InteRRaP [8]), as illustrated in Fig. 1. 
The horizontal layering architecture needs a mediator (or 
controller) to decide at each moment which layer has the 
control of the agent (or which function the agent should 
perform). The introduction of this central control system 
inevitably generates a bottleneck to the agent’s decision 
making process. The vertical layering architecture resembles 
the way that the organizations work in which information 
flows up the architecture and control then flows back down. 
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Fig. 1. Layered agent architecture design: (a) horizontal layering vs.
(b) vertical layering. 

By studying the current power grid organization, we 
propose to design three types of intelligent agents, the 
reliability coordinator agent (RCA), the utility agent (UA), 
and the reconfigurable device agent (RDA), as illustrated in 
Fig. 2. The RCAs model the behavior of reliability controllers 
and the functions performed at each control center. The 
RDAs are embedded into each FACTS device to facilitate the 
selection of which control function to execute in real time. 
The UAs model the behavior of most field RTUs and serve 
mainly as the interface between the utility (e.g. load, 
generator, compensator, and transmission line) and RCAs.  

Comparing the design architecture between RCA [Fig. 
2(a)] and InteRRaP [Fig. 1(b)], we observe some unique 
characteristics associated with the RCA design: 1) The RCA 
architecture adds one layer for trend prediction. 2) The RCA 
design merges the behavior and cooperation layers into a 

 



single layer, cooperation/reaction layer. An agent can make a 
decision on its own (reaction); it may also rely on other 
agents’ input to achieve its goal (cooperation), the difference 
being if the agent has enough valid information to make a 
decision. In Sec. III, we propose a generic interval integration 
algorithm which can help the agent determine if collaboration 
with neighboring agents is necessary in order to improve the 
reliability of the decision. 3) The interconnections between 
layers are not exactly vertical neither are they horizontal. The 
inputs reported from UAs and RDAs are fed directly to the 
three layers presented instead of going through a “situation 
estimator” for data refinement. Most of the pre-processing 
job is performed at the UA or RDA level to alleviate RCA’s 
raw data processing burden. Each layer, in turn, exchanges 
findings between each after processing the input information. 
We name this kind of connection-rich architecture as a 
hybrid-layered agent design. 4) The planning layer is marked 
with a dotted boundary to indicate that this paper does not 
consider the redesign of the planning layer, we leave a 
flexible interface for ease of future integration of the planning 
layer. 

Similar to the InteRRaP design, each layer of the RCA is 
associated with a database, including the neighbor 
information base (N) attached to the coordination layer, the 
knowledge base (K) attached to the trend prediction layer, 

and the rule and regulation base (R) attached to the planning 
layer. 
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 Fig. 2. The hybrid layered architecture design for intelligent agents within
the power grid. 

The structure of UAs mainly consists of two layers, the 
data preprocessing layer and the coordination/reaction layer. 
The data preprocessing layer is responsible for data 
refinement. The coordination layer performs localized 
collaboration with neighbors (See Sec. II.B). Both the refined 
data and the coordinated decision are sent to the RCA for 
further analysis if needed. RCA’s feedback is returned to the 
UA through the coordination layer, which in turn controls the 
field RTUs.  

The reconfigurable device agent (RDA), as shown in Fig. 
2(c), is an agent embedded in the device (or hardware-in-the-
loop agent design) to help implement a reconfigurable-grid 
concept and power electronic compensators that can provide 
an array of services such as reactive power generation, power 
flow control [9], harmonic compensation, voltage regulation, 
or dynamic control over the frequency and voltage [10][11]. 
The incorporation of FACTS devices with appropriate 
sensing and control functions can transform the electric grid 
into a reconfigurable power system. In addition, DG 
equipment that can implement any FACTS functions or 
ancillary services such as reactive power supply, frequency 
control, power flow control, voltage control, etc., provide a 
great opportunity to reconfigure the system. 

 However, the traditional FACTS devices and DG 
equipment are function dependent and locally controlled. The 
reason is two-fold: one is isolated installation cases because 
of limited penetration and the other is lack of means for 
coordination and management. As far as this reason is 
concerned, we propose that converters be integrated with 
generation resources, loads, or act as a stand-alone system. 
We will develop a large set of decision criteria for the agents 
such that they can make control decisions that will ultimately 
improve the power quality and reliability of the electric grid 
according to system needs for survivability, security, damage 
control, and optimization. The difference between the UAs 
and RDAs mainly comes from the addition of the “decision 
criteria” database. Because of the higher-level intelligence of 
the RDA, only the actions taken by the RDA are fed into the 
RCA to ensure real-time control and situation awareness.    

B. Location-Centric Hybrid Multiagent Architecture 

Wesson et al. were among the first to propose the design of 
network structures for distributed computing. Two structures 
were analyzed in their initial work [12]: the anarchic 
committee (AC) structure (Fig. 3a) and the dynamic 
hierarchical cone (DHC) structure (Fig. 3b). AC can be 
viewed as a fully interconnected network without hierarchy, 
where each node can communicate with any other node, thus 
coordination between nodes is straightforward. Although 
easy for communication, AC structure is expensive to 
implement and also hard to extend. On the other hand, DHC 
provides a hierarchical structure, also called a tree structure. 

 



 

Fig. 4. The overlap function constructed from six devices.

It only allows communications between nodes in adjacent 
layers, but not within the same layer. Compared to AC, DHC 
is easier to extend, but is more vulnerable since a faulty node 
can disconnect an entire subtree. 

Considering the nature of the power grid, we propose a 
hybrid multiagent structure with three layers, as shown in Fig. 
3(c). At the bottom layer, UAs and RDAs are responsible for 
collecting and preprocessing data from substations and 
generation plants. At this layer, only neighboring agents need 
to communicate with each other such that simple 
collaborative work can be achieved without going through the 
upper layer. We use the “one-hop” rule to define neighbors, 
that is, neighbors should be directly connected by 
transmission line or power electronics interface. The middle 
layer is where the RCAs reside. In general, each control room 
(or each control area) should have one RCA. At this layer, 
neighboring RCAs communicate with each other if they are 
geographically adjacent. The top layer is managed by the 
Independent System Operator (ISO).  

This hybrid multiagent system design, as shown in Fig. 
3(c), includes both centralized control and peer-to-peer 
location-centric communications. This architecture facilitates 
the system development in satisfaction of the five design 
requirements stated in Sec. I. More data processing and 
analysis tasks are pushed to the bottom layer of the 
architecture such that real-time response can be achieved in 
an efficient manner and large amount of raw data 
transmission is avoided over the communication link, which 
in turn reduces the burden of RCA. If the bottom layer 
coordination cannot reach a reliable solution (See Sec. I), 
decisions relayed from the upper layer will be expected and 
performed. 

III. FAULT RESILIENCY THROUGH ROBUST COLLABORATIVE 
INTERVAL INTEGRATION 

Here, we develop a generic algorithm to achieve fault 
resiliency based on multiagent coordination even through 
potentially faulty, incomplete, and missing information.  

A. Interval-based Integration 

An important concept in the derivation of the fault-resilient 
algorithm is the interval-based integration as compared to the 
value-based integration. The value-based integration 
performs the coordination algorithm based on inputs from 
devices which, without loss of generality, we assume to be 
concrete numbers (be integers or floating point numbers). 

The interval-based integration performs the coordination 
algorithm based on an interval clustered around the physical 
readout (or the number). We design the preprocessing layer in 
the RCAs, RDAs, and UAs to behave as an abstract device. 
We define an abstract device as a device that reads a physical 
parameter and gives out an abstract interval estimate which is 
a bounded and connected subset of the real number.  

ISO ISO

RCA RCA RCA

UA RDA UA RDA

(a) AC (b) DHC (c) Hybrid multiagent architecture

 
 Fig. 3.  Location-centric hybrid multiagent architecture. 

Based on this definition, a correct device is an abstract 
device whose interval estimate contains the actual value of 
the parameter being measured. Otherwise, it is a faulty 
device. A faulty device is tamely faulty if its interval estimate 
overlaps with the actual value being measured, and is wildly 
faulty if there is no overlap between its estimate and the 
actual measurement. 

For example, UA might receive a reading from a power 
line, which is 25% overloaded. The preprocessing layer of the 
UA can then output an interval of [20%, 30%] modeled by a 
Gaussian, in which we interpret the interval as, “The power 
line is 20% to 30% overloaded.” The estimate itself can be 
modeled by different stochastic distributions, the simplest of 
which would be a uniform distribution, where equal weight 
has been put on each value within the estimate range. Other 
appropriate distributions could be a Gaussian (more weight 
on the central value within the estimate range) or a Rayleigh 
(more weight on the lower values within the estimate range). 

B. Distributed Interval Integration Algorithm 

Let ζi represent an estimate distribution provided from UA 
i over an estimate range [ai, bi]. In order to integrate the 
estimate range distribution ζi from different agents, we 
develop a distributed interval integration algorithm [13][14]. 
The original centralized algorithm was proposed by Prasad, 
Iyengar, and Rao in 1994 [15], in which a control center 
collects the outputs of the devices and constructs an overlap 
function Ω , where n is the number of hardware 
devices. Fig. 4 illustrates the construction of an overlap 
function for a set of 6 devices. If we assume that the correct 
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interval estimate is [0.5, 0.6], we then observe that: the 
tamely faulty devices (s4) cluster around correct devices (s1, 
s2, s3, s6) and create high and wide (maximal) peaks in the 
profile of Ω(x) while wildly faulty devices (s5) have little or 
no overlap with correct devices, and therefore contribute to 
smaller and narrower peaks. A one-dimensional array serves 
as an appropriate data structure to store this result. The size of 
the array depends upon the resolution used. In the example, 
the resolution is 0.05.  

The original algorithm picks a “crest” from the overlap 
function and resolves only the crest in the next finer 
resolution level. The process will continue until the finest 
resolution is reached.  Taking the overlap function in Fig. 4 
as an example, the crest picked at the current resolution 
(0.05) would be [A, B]. In [15], the authors show that the 
algorithm is robust and satisfies a Lipschitz condition [16], 
which ensures that minor changes in the input intervals cause 
only minor changes in the integrated result.  

Cho et al. [17] improves the original algorithm to only 
return the interval with the overlap function ranges [n-f, n] 
where f is the number of faulty device inputs. Once again, 
take Fig. 4 as an example, where among the n = 6 devices, 
there are f = 2 faulty devices. Thus the final integration result 
using Cho’s approach will be [C, D] where the overlap 
function ranges [4, 6]. This algorithm also satisfies Lipschitz 
condition, and its main advantage is that it is able to reduce 
the width of the output interval in most cases and produce a 
narrower output interval when the number of devices 
involved is large.  

However, the problem with Cho’s approach is that the 
value of f is normally unknown. We make the following 
modifications in order to improve the reliability of the system 
to faulty inputs. We use c = h x w x acc to pick the “crest”, 
where h is the height of the highest peak in the overlap 
function, w is the width of the peak, and acc is the estimate at 
the center of the peak. The peak with the largest c is selected 
as the crest. For example, in Fig. 4, the crest selected is the 
rectangle between C and D. The height of the crest is h = 4, 
the width is w = 3, and the central value is acc = 0.55, 
therefore, c = 6.6. Based on the change of parameter c 
obtained at different stages of integration, the agent can 
determine if the integration process can be terminated. 

We design a protocol for decision making which concerns 
both the degree of fault tolerance and the accuracy achieved. 
According to the Byzantine generals problem, the maximum 
number of faults (f) that a certain amount of devices (n) can 
tolerate is 
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We define the degree of fault tolerance df as the ratio 
between f and f+n, that is, df = f/(f+n). As the agent interacts 
with other peer agents, the maximum number of faulty inputs 
that can be tolerated will change, so does the integration 

result [n-f, n], but the degree of fault tolerance maintained is 
the same as that of the Byzantine generals problem. The 
protocol says that if and only if the following three criteria 
are satisfied then a decision can be rendered; otherwise, the 
agent has to continue coordination with its neighbors to 
obtain more information, that is, the agent’s decision is not 
reliable enough to be trusted: 

1. The overlap function has its highest peaks ranging 
from [n-f, n], where f is calculated from Eq. (1). 

2.  The center value of the pick (acc) has to be equal to or 
larger than the median of the estimated interval. For 
example, if the estimated interval is [0, 1], then the acc 
cannot be less than 0.5. 

3. Both 1 and 2 have to be satisfied in two adjacent 
integrations excluding the first agent in order to add 
stability to the decision. 

C. Case Study 

We provide an application example to show how this 
protocol is applied [18]. Assume a neighborhood of four UAs 
participate in a collaborative decision making process in 
order to determine which power line needs Var compensation 
the most. The three intervals associated with each agent in 
Table 1 indicate the estimate range of that agent thinking how 
much Var that power line needs. For example, UA1 thinks 
power line #1 needs 1000-2900 kVar. In this example, UA1 
provides a tamely faulty result. Fig. 5 illustrates how agent 
collaboration generates the partially integrated estimate range 
when the integration is progressively performed from UA1 to 
UA4. We assume the resolution requirement is 500 kVar. 
Table 2 summarizes the agents’ decision making procedure 
after integration with each of the four neighbors. The 
highlighted number in Table 2 indicates the largest c, which 
can show us the integrated decision of several agents. We 
observe that the integration result at UA1 and UA1+UA2 
shows that “line #2” needs Var the most, but changes to “line 
#3” when integrating with inputs from UA3 and UA4.  

How does an agent determine when it can stop the 
integration process? When three agents coordinate with each 
other (Fig. 5(c)), i.e., device number n = 3, we get f = 0 from 
Eq. (1) and the highest peak range is [3,3]. In the three graphs 
of Fig. 5(c), we can see the highest peak exists in the leftmost 
graph, which is 3, so the first criterion is satisfied; the “acc” 
of Line#3 in Fig. 5(c) is 0.525, which is larger than 0.5, hence 
the second criterion is also satisfied. With device number  
n = 4, i.e., there are four agents coordinating with each other, 
we get f = 1 and the highest peak range is [3,4]. We observe 
that the highest peak in the three graphs of Fig. 5 (d) is 4; and 
the “acc” of Line#3 is 0.55, so both criterion 1 and 2 are 
satisfied. Because the first two criteria are satisfied in two 
adjacent integrations of “UA1+2+3” and “UA1+2+3+4” (criterion 
3), we can conclude the agent’s decision is reliable enough, 
we can stop the integration even though more agents’ 
decision are available. 

 



TABLE 1. Initial estimate range distribution made by four neighboring agents. 
UAs Line#1(*104kVar) Line#2(*104kVar) Line#3(*104kVar) 
1 [0.10,0.29] [0.45,0.65] [0.10,0.21] 
2 [0.05,0.14] [0.05,0.41] [0.22,0.58] 
3 [0.05,0.15] [0.05,0.15] [0.49,0.59] 
4 [0.08,0.16] [0.08,0.16] [0.51,0.60] 

TABLE 2. Collaborative decision between agents (unit: 104kVar). 
 UA1 UA1+2 UA1+2+3 UA1+2+3+4 
 c acc c acc c acc c acc 
Line#1 0.8 0.2 0.5 0.125 0.375 0.125 0.5 0.125 
Line#2 2.2 0.55 4.2 0.35 0.4 0.1 0.6 0.1 
Line#3 0.525 0.175 0.45 0.225 3.15 0.525 3.3 0.55 

 

  
(a) UA1 

    
(b) UA1+UA2 

    
(c) UA1+UA2+UA3 

    
(d) UA1+UA2+UA3+UA4 

 Fig. 5. Multiagent interval integration results with a progressively improving 
reliability (From left to right: Line#1, Line#2, Line#3 ). 

IV. CONCLUSIONS 

Power electronics based grid interface systems have the 
ability for reactive power generation/compensation, power 

flow control, harmonic compensation, voltage regulation, 
dynamic control over the frequency and voltage output, and 
real-time control of distributed resources.  

Multi-agent systems provide a mechanism to facilitate 
collaboration among individuals over the grid. We propose a 
hardware-in-the-loop agent system that can provide the 
power grid with new and improved capabilities and fill in the 
gap from previous research on agent-based systems, and 
solve several unanswered fundamental questions, including 
the challenge of real-time response (within milliseconds), the 
integration of future reconfigurable devices, and decision 
making based on incomplete, missing, or even faulty 
information. 
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