
A Resilient Real-Time Agent-Based System
for a Reconfigurable Power Grid

Hairong Qi, Senior Member, IEEE, Wenjuan Zhang, Student Member, IEEE,
Leon M. Tolbert, Senior Member, IEEE1

Abstract Reliable electricity has become an essential

underpinning for national security in modern society. The
fault-tolerant generic framework proposed herein can
prevent potential outages from happening through
intelligent agent coordination. Instead of limiting the
system to manage existing devices, the developed system is
adaptive to the future power grid in years to come. This
paper proposes a hardware-in-the-loop multiagent system
with embedded models and functions.

Index Terms — multi-agent system, real-time response,
reconfigurable power grid, collaboration, fault resiliency

I. INTRODUCTION

T he electric power industry in the 21st Century has seen
dramatic changes in both its physical infrastructure and
its control and communication/information

infrastructure. As a result, a shift will take place from a
relatively few large, concentrated generation centers and the
transmission of electricity over mostly a high voltage ac grid
to a more diverse and dispersed generation infrastructure that
includes renewable or sustainable energy sources [1][2].

The existing energy management system (EMS) consists of
three components, the system control and data acquisition
(SCADA) system, the state estimator (SE), and the
contingency analysis (CA). SCADA systems serve as both
data gathering systems as well as device control systems.
Data are collected from generation plants and substations
through field remote terminal units (RTUs) and then fed into
master stations integrated in the control room of each control
area. The SE is used in the control room to improve the
accuracy of the raw sampled data by mathematically
processing raw data to make it consistent with the electrical
system model. The resulting information for equipment
voltages and loadings is used in software tools such as CA to
simulate various conditions and outages to evaluate the
reliability of the power system.

However, there exist serious defects in both system-level
management and device-level design and maintenance. The
massive power blackout of August 14, 2003 was a wakeup

call for both the industry and academia to re-think techniques
that help assure the reliability of the power grid [3].

At the system level, the control area operators lack the
capability to 1) obtain real-time status information of the
equipment, 2) adequately assess the situation and predict
trends before the fact; 3) respond rapidly enough (within
milliseconds) once events start to unravel; and 4) perform
coordinated actions in real time across the region. It is
astonishing to realize, after the fact, in what an information
vacuum and outdated power delivery grid the controllers have
been operating. At the device level, the traditional hardware
lacks the capability to 1) provide reactive power, frequency
control, and voltage control according to system needs and
correspondingly, 2) rapidly reconfigure the system to a
secure state through disconnect switches, circuit breakers,
and power-electronics based devices.

The Electric Power Research Institute (EPRI) estimates
that the annual economic losses from outages and other
power quality and reliability events to be 1% of GDP, or
$100 billion per year [4]. The vulnerability of the power grid
during the August 14 blackout calls for a re-design of the
power grid at both the information technology (IT)
infrastructure level and the device level. Specifically, the
reformed power grid should satisfy the following five
requirements:

First, consider the real time requirement. Some major
factors that affect the implementation of real-time
management include the large amount of raw data, the
complex mathematical modeling, as well as the time-
consuming contingency analysis algorithms. In order to
achieve real-time operations, intelligence has to be pushed
toward the device level such that only pre-filtered data and
local decisions need to be processed at the higher control
level. In addition, efficient, lightweight, and on-line data
analysis and decision making algorithms are also desired.

Second, consider the reactivity requirement. The
incorporation of Flexible AC Transmission Systems
(FACTS) devices with appropriate sensing and control
functions can transform the electric grid into a reconfigurable
power system where actions can be taken in microseconds to
control the flow of power and ensure high levels of reliability
and quality in the power system. _____________________

1H. Qi, W. Zhang, and L. M. Tolbert are with the Department of Electrical
and Computer Engineering, The University of Tennessee, Knoxville, TN
37996-2100 USA, E-mail: hqi@utk.edu, wzhang5@utk.edu,
tolbert@utk.edu.

Third, consider the proactivity requirement. The “proactive
requirement” is more difficult to satisfy than the
“contingency requirement” in that it requires the system to be
able to predict the problem before it actually occurs. On-line

prediction would pose another challenge to the reformed IT
infrastructure.

Fourth, consider the collaborative processing requirement.
Information exchange among hundreds or even thousands of
distributed generation centers instead of just among a handful
of large utilities is a new challenge brought by deregulation.

Finally, consider the fault resiliency requirement. The
decision making algorithms need to be able to tolerate the
missing, incomplete, or faulty data and still be able to reach a
correct decision. We refer to this property as resiliency.

This paper describes the design of a hardware-in-the-loop
multi-agent system for resilient, real-time control of the
reconfigurable power grid. The approach is divided into three
main tasks that are described in the following sections,
including the design of multi-agent system architecture, the
development of an agent-based reconfigurable power
electronic device, and fault-tolerant collaboration.

II. THE MULTIAGENT SYSTEM ARCHITECTURE

There has been an accelerating trend in the integration of
computing and communication in critical infrastructure
systems as exemplified in the power grid. As these systems
become more and more complex, they have to be broken
down into ‘weakly coupled’ modules, or independent units
with limited interactions, which can be fully controlled [5].

This is the basic philosophy behind the design of object-
oriented languages. In multiagent based systems, the
emphasis is on the interaction between the agents as well as
the flexibility (intelligence) carried by the agents. The
metaphor of local agents negotiating their way to reach an
equilibrium state is a very natural and attractive one that
simplifies the understanding of the principles of the system.
Because of the autonomous nature of agents, they enable the
utility to do continuous online analysis with every load in the
entire system.

A multiagent system is composed of multiple intelligent
agents interacting with each other through communication
networks in order to satisfy their design objectives. Each
intelligent agent is capable of three actions, including
autonomously responding to the environment (autonomy and
reactivity), taking initiative steps toward goal implementation
(proactivity), and interaction with other agents (social
ability). The development of a multiagent system includes
both system-level designs and individual agent-level designs.
In the following two subsections, we will address each in
detail.

A. Hybrid Layered Architecture Design for Intelligent Agent

There have been mainly four categories of agent
architectures: logic-based, reactive, belief-desire-intention,
and layered [6]. Due to the nature of the power grid in which
both reactive and proactive behaviors are desired, a layered
architecture becomes an appropriate design option. There are
two types of control flow within the layered architectures, the
horizontal layering (e.g. TouringMachines [7]) and the
vertical layering (e.g. InteRRaP [8]), as illustrated in Fig. 1.
The horizontal layering architecture needs a mediator (or
controller) to decide at each moment which layer has the
control of the agent (or which function the agent should
perform). The introduction of this central control system
inevitably generates a bottleneck to the agent’s decision
making process. The vertical layering architecture resembles
the way that the organizations work in which information
flows up the architecture and control then flows back down.

Modeling layer

Planning layer

Reactive layer

Control Subsystem

(a) TouringMachines: horizontal layering

Action
Subsystem

Perception
Subsystem

Cooperation layer

World Interface

Plan layer

Behavior layer

(b) InteRRaP: vertical layering
Perceptual input Action output

Social knowledge

Planning knowledge

World model

Fig. 1. Layered agent architecture design: (a) horizontal layering vs.
(b) vertical layering.

By studying the current power grid organization, we
propose to design three types of intelligent agents, the
reliability coordinator agent (RCA), the utility agent (UA),
and the reconfigurable device agent (RDA), as illustrated in
Fig. 2. The RCAs model the behavior of reliability controllers
and the functions performed at each control center. The
RDAs are embedded into each FACTS device to facilitate the
selection of which control function to execute in real time.
The UAs model the behavior of most field RTUs and serve
mainly as the interface between the utility (e.g. load,
generator, compensator, and transmission line) and RCAs.

Comparing the design architecture between RCA [Fig.
2(a)] and InteRRaP [Fig. 1(b)], we observe some unique
characteristics associated with the RCA design: 1) The RCA
architecture adds one layer for trend prediction. 2) The RCA
design merges the behavior and cooperation layers into a

single layer, cooperation/reaction layer. An agent can make a
decision on its own (reaction); it may also rely on other
agents’ input to achieve its goal (cooperation), the difference
being if the agent has enough valid information to make a
decision. In Sec. III, we propose a generic interval integration
algorithm which can help the agent determine if collaboration
with neighboring agents is necessary in order to improve the
reliability of the decision. 3) The interconnections between
layers are not exactly vertical neither are they horizontal. The
inputs reported from UAs and RDAs are fed directly to the
three layers presented instead of going through a “situation
estimator” for data refinement. Most of the pre-processing
job is performed at the UA or RDA level to alleviate RCA’s
raw data processing burden. Each layer, in turn, exchanges
findings between each after processing the input information.
We name this kind of connection-rich architecture as a
hybrid-layered agent design. 4) The planning layer is marked
with a dotted boundary to indicate that this paper does not
consider the redesign of the planning layer, we leave a
flexible interface for ease of future integration of the planning
layer.

Similar to the InteRRaP design, each layer of the RCA is
associated with a database, including the neighbor
information base (N) attached to the coordination layer, the
knowledge base (K) attached to the trend prediction layer,

and the rule and regulation base (R) attached to the planning
layer.

Trend Prediction Planning

Cooperation/Reaction

UA/RDA

N

K R

(a) RCA

Field RTUs

RCA

Cooperation/Reaction

Data Preprocessing

N

(b) UA

Transmission lines

RCA

Cooperation/Reaction

Data Preprocessing

N
Decision Criteria

(c) RDA

 Fig. 2. The hybrid layered architecture design for intelligent agents within
the power grid.

The structure of UAs mainly consists of two layers, the
data preprocessing layer and the coordination/reaction layer.
The data preprocessing layer is responsible for data
refinement. The coordination layer performs localized
collaboration with neighbors (See Sec. II.B). Both the refined
data and the coordinated decision are sent to the RCA for
further analysis if needed. RCA’s feedback is returned to the
UA through the coordination layer, which in turn controls the
field RTUs.

The reconfigurable device agent (RDA), as shown in Fig.
2(c), is an agent embedded in the device (or hardware-in-the-
loop agent design) to help implement a reconfigurable-grid
concept and power electronic compensators that can provide
an array of services such as reactive power generation, power
flow control [9], harmonic compensation, voltage regulation,
or dynamic control over the frequency and voltage [10][11].
The incorporation of FACTS devices with appropriate
sensing and control functions can transform the electric grid
into a reconfigurable power system. In addition, DG
equipment that can implement any FACTS functions or
ancillary services such as reactive power supply, frequency
control, power flow control, voltage control, etc., provide a
great opportunity to reconfigure the system.

 However, the traditional FACTS devices and DG
equipment are function dependent and locally controlled. The
reason is two-fold: one is isolated installation cases because
of limited penetration and the other is lack of means for
coordination and management. As far as this reason is
concerned, we propose that converters be integrated with
generation resources, loads, or act as a stand-alone system.
We will develop a large set of decision criteria for the agents
such that they can make control decisions that will ultimately
improve the power quality and reliability of the electric grid
according to system needs for survivability, security, damage
control, and optimization. The difference between the UAs
and RDAs mainly comes from the addition of the “decision
criteria” database. Because of the higher-level intelligence of
the RDA, only the actions taken by the RDA are fed into the
RCA to ensure real-time control and situation awareness.

B. Location-Centric Hybrid Multiagent Architecture

Wesson et al. were among the first to propose the design of
network structures for distributed computing. Two structures
were analyzed in their initial work [12]: the anarchic
committee (AC) structure (Fig. 3a) and the dynamic
hierarchical cone (DHC) structure (Fig. 3b). AC can be
viewed as a fully interconnected network without hierarchy,
where each node can communicate with any other node, thus
coordination between nodes is straightforward. Although
easy for communication, AC structure is expensive to
implement and also hard to extend. On the other hand, DHC
provides a hierarchical structure, also called a tree structure.

Fig. 4. The overlap function constructed from six devices.

It only allows communications between nodes in adjacent
layers, but not within the same layer. Compared to AC, DHC
is easier to extend, but is more vulnerable since a faulty node
can disconnect an entire subtree.

Considering the nature of the power grid, we propose a
hybrid multiagent structure with three layers, as shown in Fig.
3(c). At the bottom layer, UAs and RDAs are responsible for
collecting and preprocessing data from substations and
generation plants. At this layer, only neighboring agents need
to communicate with each other such that simple
collaborative work can be achieved without going through the
upper layer. We use the “one-hop” rule to define neighbors,
that is, neighbors should be directly connected by
transmission line or power electronics interface. The middle
layer is where the RCAs reside. In general, each control room
(or each control area) should have one RCA. At this layer,
neighboring RCAs communicate with each other if they are
geographically adjacent. The top layer is managed by the
Independent System Operator (ISO).

This hybrid multiagent system design, as shown in Fig.
3(c), includes both centralized control and peer-to-peer
location-centric communications. This architecture facilitates
the system development in satisfaction of the five design
requirements stated in Sec. I. More data processing and
analysis tasks are pushed to the bottom layer of the
architecture such that real-time response can be achieved in
an efficient manner and large amount of raw data
transmission is avoided over the communication link, which
in turn reduces the burden of RCA. If the bottom layer
coordination cannot reach a reliable solution (See Sec. I),
decisions relayed from the upper layer will be expected and
performed.

III. FAULT RESILIENCY THROUGH ROBUST COLLABORATIVE
INTERVAL INTEGRATION

Here, we develop a generic algorithm to achieve fault
resiliency based on multiagent coordination even through
potentially faulty, incomplete, and missing information.

A. Interval-based Integration

An important concept in the derivation of the fault-resilient
algorithm is the interval-based integration as compared to the
value-based integration. The value-based integration
performs the coordination algorithm based on inputs from
devices which, without loss of generality, we assume to be
concrete numbers (be integers or floating point numbers).

The interval-based integration performs the coordination
algorithm based on an interval clustered around the physical
readout (or the number). We design the preprocessing layer in
the RCAs, RDAs, and UAs to behave as an abstract device.
We define an abstract device as a device that reads a physical
parameter and gives out an abstract interval estimate which is
a bounded and connected subset of the real number.

ISO ISO

RCA RCA RCA

UA RDA UA RDA

(a) AC (b) DHC (c) Hybrid multiagent architecture

 Fig. 3. Location-centric hybrid multiagent architecture.

Based on this definition, a correct device is an abstract
device whose interval estimate contains the actual value of
the parameter being measured. Otherwise, it is a faulty
device. A faulty device is tamely faulty if its interval estimate
overlaps with the actual value being measured, and is wildly
faulty if there is no overlap between its estimate and the
actual measurement.

For example, UA might receive a reading from a power
line, which is 25% overloaded. The preprocessing layer of the
UA can then output an interval of [20%, 30%] modeled by a
Gaussian, in which we interpret the interval as, “The power
line is 20% to 30% overloaded.” The estimate itself can be
modeled by different stochastic distributions, the simplest of
which would be a uniform distribution, where equal weight
has been put on each value within the estimate range. Other
appropriate distributions could be a Gaussian (more weight
on the central value within the estimate range) or a Rayleigh
(more weight on the lower values within the estimate range).

B. Distributed Interval Integration Algorithm

Let ζi represent an estimate distribution provided from UA
i over an estimate range [ai, bi]. In order to integrate the
estimate range distribution ζi from different agents, we
develop a distributed interval integration algorithm [13][14].
The original centralized algorithm was proposed by Prasad,
Iyengar, and Rao in 1994 [15], in which a control center
collects the outputs of the devices and constructs an overlap
function Ω , where n is the number of hardware
devices. Fig. 4 illustrates the construction of an overlap
function for a set of 6 devices. If we assume that the correct

∑ =
=

n

i i xx
1

)()(ζ

interval estimate is [0.5, 0.6], we then observe that: the
tamely faulty devices (s4) cluster around correct devices (s1,
s2, s3, s6) and create high and wide (maximal) peaks in the
profile of Ω(x) while wildly faulty devices (s5) have little or
no overlap with correct devices, and therefore contribute to
smaller and narrower peaks. A one-dimensional array serves
as an appropriate data structure to store this result. The size of
the array depends upon the resolution used. In the example,
the resolution is 0.05.

The original algorithm picks a “crest” from the overlap
function and resolves only the crest in the next finer
resolution level. The process will continue until the finest
resolution is reached. Taking the overlap function in Fig. 4
as an example, the crest picked at the current resolution
(0.05) would be [A, B]. In [15], the authors show that the
algorithm is robust and satisfies a Lipschitz condition [16],
which ensures that minor changes in the input intervals cause
only minor changes in the integrated result.

Cho et al. [17] improves the original algorithm to only
return the interval with the overlap function ranges [n-f, n]
where f is the number of faulty device inputs. Once again,
take Fig. 4 as an example, where among the n = 6 devices,
there are f = 2 faulty devices. Thus the final integration result
using Cho’s approach will be [C, D] where the overlap
function ranges [4, 6]. This algorithm also satisfies Lipschitz
condition, and its main advantage is that it is able to reduce
the width of the output interval in most cases and produce a
narrower output interval when the number of devices
involved is large.

However, the problem with Cho’s approach is that the
value of f is normally unknown. We make the following
modifications in order to improve the reliability of the system
to faulty inputs. We use c = h x w x acc to pick the “crest”,
where h is the height of the highest peak in the overlap
function, w is the width of the peak, and acc is the estimate at
the center of the peak. The peak with the largest c is selected
as the crest. For example, in Fig. 4, the crest selected is the
rectangle between C and D. The height of the crest is h = 4,
the width is w = 3, and the central value is acc = 0.55,
therefore, c = 6.6. Based on the change of parameter c
obtained at different stages of integration, the agent can
determine if the integration process can be terminated.

We design a protocol for decision making which concerns
both the degree of fault tolerance and the accuracy achieved.
According to the Byzantine generals problem, the maximum
number of faults (f) that a certain amount of devices (n) can
tolerate is

 −

=
3

1nf (1)

We define the degree of fault tolerance df as the ratio
between f and f+n, that is, df = f/(f+n). As the agent interacts
with other peer agents, the maximum number of faulty inputs
that can be tolerated will change, so does the integration

result [n-f, n], but the degree of fault tolerance maintained is
the same as that of the Byzantine generals problem. The
protocol says that if and only if the following three criteria
are satisfied then a decision can be rendered; otherwise, the
agent has to continue coordination with its neighbors to
obtain more information, that is, the agent’s decision is not
reliable enough to be trusted:

1. The overlap function has its highest peaks ranging
from [n-f, n], where f is calculated from Eq. (1).

2. The center value of the pick (acc) has to be equal to or
larger than the median of the estimated interval. For
example, if the estimated interval is [0, 1], then the acc
cannot be less than 0.5.

3. Both 1 and 2 have to be satisfied in two adjacent
integrations excluding the first agent in order to add
stability to the decision.

C. Case Study

We provide an application example to show how this
protocol is applied [18]. Assume a neighborhood of four UAs
participate in a collaborative decision making process in
order to determine which power line needs Var compensation
the most. The three intervals associated with each agent in
Table 1 indicate the estimate range of that agent thinking how
much Var that power line needs. For example, UA1 thinks
power line #1 needs 1000-2900 kVar. In this example, UA1
provides a tamely faulty result. Fig. 5 illustrates how agent
collaboration generates the partially integrated estimate range
when the integration is progressively performed from UA1 to
UA4. We assume the resolution requirement is 500 kVar.
Table 2 summarizes the agents’ decision making procedure
after integration with each of the four neighbors. The
highlighted number in Table 2 indicates the largest c, which
can show us the integrated decision of several agents. We
observe that the integration result at UA1 and UA1+UA2
shows that “line #2” needs Var the most, but changes to “line
#3” when integrating with inputs from UA3 and UA4.

How does an agent determine when it can stop the
integration process? When three agents coordinate with each
other (Fig. 5(c)), i.e., device number n = 3, we get f = 0 from
Eq. (1) and the highest peak range is [3,3]. In the three graphs
of Fig. 5(c), we can see the highest peak exists in the leftmost
graph, which is 3, so the first criterion is satisfied; the “acc”
of Line#3 in Fig. 5(c) is 0.525, which is larger than 0.5, hence
the second criterion is also satisfied. With device number
n = 4, i.e., there are four agents coordinating with each other,
we get f = 1 and the highest peak range is [3,4]. We observe
that the highest peak in the three graphs of Fig. 5 (d) is 4; and
the “acc” of Line#3 is 0.55, so both criterion 1 and 2 are
satisfied. Because the first two criteria are satisfied in two
adjacent integrations of “UA1+2+3” and “UA1+2+3+4” (criterion
3), we can conclude the agent’s decision is reliable enough,
we can stop the integration even though more agents’
decision are available.

TABLE 1. Initial estimate range distribution made by four neighboring agents.
UAs Line#1(*104kVar) Line#2(*104kVar) Line#3(*104kVar)
1 [0.10,0.29] [0.45,0.65] [0.10,0.21]
2 [0.05,0.14] [0.05,0.41] [0.22,0.58]
3 [0.05,0.15] [0.05,0.15] [0.49,0.59]
4 [0.08,0.16] [0.08,0.16] [0.51,0.60]

TABLE 2. Collaborative decision between agents (unit: 104kVar).
 UA1 UA1+2 UA1+2+3 UA1+2+3+4
 c acc c acc c acc c acc
Line#1 0.8 0.2 0.5 0.125 0.375 0.125 0.5 0.125
Line#2 2.2 0.55 4.2 0.35 0.4 0.1 0.6 0.1
Line#3 0.525 0.175 0.45 0.225 3.15 0.525 3.3 0.55

(a) UA1

(b) UA1+UA2

(c) UA1+UA2+UA3

(d) UA1+UA2+UA3+UA4

 Fig. 5. Multiagent interval integration results with a progressively improving
reliability (From left to right: Line#1, Line#2, Line#3).

IV. CONCLUSIONS

Power electronics based grid interface systems have the
ability for reactive power generation/compensation, power

flow control, harmonic compensation, voltage regulation,
dynamic control over the frequency and voltage output, and
real-time control of distributed resources.

Multi-agent systems provide a mechanism to facilitate
collaboration among individuals over the grid. We propose a
hardware-in-the-loop agent system that can provide the
power grid with new and improved capabilities and fill in the
gap from previous research on agent-based systems, and
solve several unanswered fundamental questions, including
the challenge of real-time response (within milliseconds), the
integration of future reconfigurable devices, and decision
making based on incomplete, missing, or even faulty
information.

REFERENCES
[1] J. Contreras, F. F. Wu, “Coalition formation in transmission expansion

planning,” IEEE Trans on Power Systems, vol. 14, no. 3, pp. 1144-
1152, August 1999.

[2] M. Meinhardt, G. Cramer, “Past, present, and future of grid-connected
photovoltaic- and hybrid-power-systems,” Conference Record – IEEE
Power Engineering Society Summer Meeting, July 16-20, 2000, Seattle,
Washington, pp. 1283-1288.

[3] Symmetricom, White Paper: How time finally caught up with the
power grid, IT Research, http://www.bitpipe.com, January 1, 2004.

[4] EPRI, “Estimating the costs of power disturbances,” EPRI Journal
Online, July 15, 2003.

[5] J. Ferber, Multi-Agent Systems: An Introduction to Distributed
Artificial Intelligence, Addison-Wesley, 1999.

[6] M. Wooldridge, “Chapter 1: Intelligent Agents,” from Multiagent
Systems – A Modern Approach to Distributed Artificial Intelligence.
Editor: G. Weiss. The MIT Press, 1999.

[7] I. A. Ferguson, TouringMachines: An Architecture for Dynamic,
Rational, Mobile Agents. Ph.D. Thesis, Clare Hall, University of
Cambridge, UK, November 1992.

[8] J. Muller, “A cooperation model for autonomous agents,” In Intelligent
Agents III, LNAI vol. 1193, pages 245-260. Editors, J. Muller, M.
Wooldridge, N. R. Jennings. Springer-Verlag: Berlin, Germany, 1997.

[9] J. Wang, F. Z. Peng, “A novel configuration of unified power flow
controller,” IEEE APEC, pp. 919-924, February 2003.

[10] F. Z. Peng, J. S. Lai, “Dynamic performance and control of a static var
generator using multilevel inverters,” IEEE Trans. Industry
Applications, 33(3): 748-755, May/June 1997.

[11] L. M. Tolbert, F. Z. Peng, “Multilevel converters as a utility interface
for renewable energy Systems,” IEEE Power Engineering Society
Summer Meeting, 2000, Seattle, Washington, pp. 1271-1274.

[12] R. Wesson, F. Hayes-Roth, J. W. Burge, C. Stasz, C. A. Sunshine,
“Network structures for distributed situation assessment,” IEEE Trans.
Syst., Man, Cybern, SMC-11(1): 5-23, January 1981.

[13] H. Qi, Y. Xu, X. Wang, “Mobile-agent-based collaborative signal and
information processing in sensor networks,” Proceedings of the IEEE,
vol. 91, no. 8, pp. 1172-1183, August 2003.

[14] H. Qi, S. S. Iyengar, K. Chakrabarty, “Multi-resolution data integration
using mobile agents in distributed sensor networks,” IEEE Trans. Syst,
Man and Cybern (Part C), vol. 31, pp. 383-391, August 2001.

[15] L. Prasad, S. S. Iyengar, R. L. Rao, “Fault-tolerant sensor integration
using multiresolution decomposition,” Physical Review E, 49(4): 3452-
3461, April 1994.

[16] L. Lamport, “Synchronizing time servers,” Digital System Research
Center, Technical Report 18, 1987.

[17] E. Cho, S. S. Iyengar, K. Chakrabarty, H. Qi, “A new fault tolerant
sensor integration function satisfying local Lipschitz condition,”
Submitted to IEEE Trans. Aerosp. Electron. Syst., 2000

[18] W. Zhang, L. M. Tolbert, “Survey of reactive power planning
methods,” IEEE Power Engineering Society General Meeting, June 12-
16, 2005, San Francisco, California, pp. 1580-1590.

http://www.bitpipe.com/

	I. Introduction
	II. The Multiagent System Architecture
	A. Hybrid Layered Architecture Design for Intelligent Agent
	B. Location-Centric Hybrid Multiagent Architecture

	III. Fault Resiliency through Robust Collaborative Interval Integration
	B. Distributed Interval Integration Algorithm
	C. Case Study

	IV. Conclusions
	References

