Abstract: The emergence of silicon carbide- (SiC-) based power semiconductor switches, with their superior features compared with silicon- (Si-) based switches, has resulted in substantial improvement in the performance of power electronics converter systems. These systems with SiC power devices have the qualities of being more compact, lighter, and more efficient; thus, they are ideal for high-voltage power electronics applications such as a hybrid electric vehicle (HEV) traction drive. More research is required to show the impact of SiC devices in power conversion systems. In this study, findings of SiC research at Oak Ridge National Laboratory (ORNL), including SiC device design and system modeling studies, will be discussed.

I. INTRODUCTION

Presently, almost all the power electronics converter systems use silicon- (Si-) based power semiconductor switches. The performance of these switches is approaching the theoretical limits of the Si material. Another material, silicon carbide (SiC), with superior properties compared with Si, is a good candidate to be used in the next generation of power devices.

SiC power devices, with their close-to-ideal characteristics, bring great performance improvement to power converter applications. Some of these advantages compared with Si-based power devices are as follows:

- SiC unipolar devices are thinner, and they have lower on-resistances. At low breakdown voltages (~50 V), these devices have specific on-resistances of 1.12 µΩ, around 100 times less than those of their Si counterparts. At higher breakdown voltages (~5000 V), the on-resistance goes up to 29.5 mΩ, but it still is 300 times less than that of the comparable Si devices [1]. With lower on-resistances, SiC power devices have lower conduction losses; therefore, the converters have higher overall efficiency.
- SiC-based power devices have higher breakdown voltages because of their higher electric breakdown field; for example, Si Schottky diodes are commercially available typically at voltages lower than 300 V, but the first commercial SiC Schottky diodes are already rated at 600 V.
- SiC has a higher thermal conductivity (4.9 W/cm-K for SiC and 1.5 W/cm-K for Si), and SiC power devices have a lower junction-to-case thermal resistance, R_{thjc} (0.02 K/W for SiC and 0.06 K/W for Si); thus device temperature increase is slower.
- SiC devices can operate at high temperatures. SiC device operation at up to 600°C is mentioned in the literature [2]. Si devices, on the other hand, can operate at a maximum junction temperature of only 150°C.
- SiC is extremely radiation hard; that is, radiation does not degrade the electronic properties of SiC.
- Forward and reverse characteristics of SiC power devices vary only slightly with temperature and time; therefore, they are more reliable.
- SiC-based bipolar devices have excellent reverse recovery characteristics [3]. With less reverse recovery current, the switching losses and EMI are reduced, and there is less or no need for snubbers.
- Because of low switching losses, SiC-based devices can operate at higher frequencies (>20 kHz) not possible with Si-based devices in power levels of more than a few tens of kilowatts.

Although SiC has these advantages compared with Si, the present disadvantages limit its widespread use. Some of these disadvantages are:

- Low processing yield because of micropipes. The best wafers available have <1/cm², but they are more expensive than the typical wafer with <10/cm².
- High cost~$7 for a 600 V, 4 A Schottky diode (a similar Si pn diode is <<$1).
- Limited availability (only Schottky diodes at relatively low power are commercially available).
- Need for high-temperature packaging techniques that have not yet been developed.

At Oak Ridge National Laboratory (ORNL), a project team consisting of materials, device, and systems researchers—in cooperation with The University of Tennessee-Knoxville, Auburn University, and Vanderbilt University—are building SiC power MOSFETs. The reason for having a diverse team of people from different disciplines is to develop better devices by encouraging interaction between the researchers who build the devices.
and the ones who use them. The final power MOSFETs will be used in power electronics converter systems for automotive applications to demonstrate the benefits of SiC-based power devices. One of the selected systems for this project is a traction drive.

II. SiC Devices

A. Schottky and pn junction diodes:

The Schottky diode is the least-complex SiC power device. Schottky diodes have been fabricated by forming a metal contact with doped SiC samples. Four different SiC samples were prepared; their characteristics are given in Table I. All p-type contacts are Al-Ni, and n-type contacts are Au-As-Ni alloy.

The I-V plots for samples A and D in Figs. 1 and 2 do not show any extra resistance due to the new contact material. This means that Au-As-Ni alloy makes a good contact for n-SiC. Note that, based on an extensive literature search, Au-As-Ni contacts are a novel approach for SiC device applications.

Doping densities have been calculated from the slope of the C-V characteristic plots. The C-V plots for samples A and B are shown in Figs. 3 and 4, respectively. The measured values of the activated doping densities are sample A, 5.6×10^{15} cm$^{-3}$, sample B, 1.02×10^{16} cm$^{-3}$, sample C, 8.6×10^{17} cm$^{-3}$, and sample D, 1.3×10^{18} cm$^{-3}$. These values are similar to the applied doping, another sign of a good contact.

B. MOSFETs:

The double implanted metal-oxide semiconductor (DIMOS) field effect transistor has been frequently used in high-voltage power electronics applications [4, 5]. The performance of a DIMOS device is limited by the quasi-saturation behavior in its characteristics. It is shown that such an effect is due to carrier velocity saturation because of the high electric field, low impurity concentration in the drift layer, and narrow p-body spacing [6]. A detailed study has been made of the vertical DIMOS, and an analytical model has been developed. Fig. 5 shows the DIMOS device, identifying different regions of operation. An analytical model is developed from regional analysis of carrier transport in the channel and drift regions. The current/voltage characteristic in the triode region is given by

$$I_{ch} = \frac{W \mu_{eff}}{2L} \left[\frac{V_{GS} - V_{th}}{2V_{sat}} \right] \left[2C_{ox}(V_{GS} - V_{th}) - (C_{ox} + C_{do})V_{th} \right]$$

where W is the width of the transistor, μ_{eff} is the effective electron mobility, V_{sat} is the saturation drift velocity, V_{th} is the channel voltage, V_{GS} is the gate-source voltage, V_{th} is the threshold voltage, C_{ox} is the oxide capacitance, C_{do} is the body depletion capacitance, and L is shown in Fig. 5.

The drift region is divided into three parts: an accumulation region A, a drift region B with a varying cross section area, and a drift region C with constant cross section. Voltage across each of these regions is given by

- Table I

<table>
<thead>
<tr>
<th>Sample</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schottky diode (p-type epi)</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pn diode (p-type epi on n-type substrate)</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Implanted with boron and silicon</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Implanted with boron only</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
\[V_A = \int \frac{w_{n+}}{q} \frac{I_D(W_j + W_e)}{W(L_{eff} qN_s \mu_{n+}) - I_D/|E_c|} \quad (2) \]

\[V_s = \frac{I_D}{WqN_s \mu_{n+} \log \left(\frac{WqN_s L_{eff} \mu_{n+} - I_D/|E_c|}{WqN_s L_{eff} \mu_{n+} - I_D/|E_c|} \right)} \tan \alpha \quad (3) \]

\[V_C = \frac{I_D(W_j - W_e - W_j - L_e \tan \alpha)}{W(L_{eff} + L_e) qN_s \mu_{n+} - I_D/|E_c|} \quad (4) \]

where \(I_D \) is the drain current, \(E_c \) is the critical electric field, \(q \) is the electron charge, and \(\alpha \) is the angle shown in Fig. 5.

The total drift region voltage \(V_{drift} = V_A + V_B + V_C \), and the voltage across the drain to source \(V_{DS} = V_{drift} + V_{ch} \). The current/voltage characteristics are shown for the analytical model in Fig. 6.

III. SYSTEM MODELING

The main objective of system modeling is to show some of the system-level benefits of using SiC devices in power converter applications, such as the large reduction in the size, weight, and cost of the power conditioning and/or thermal management systems. The selected system for this study is a hybrid electric vehicle (HEV) traction drive. A typical electric drive traction schematic for an HEV is shown in Fig. 7. The schematic consists of a battery, a three-phase inverter (dc/ac converter), and an induction motor.

To evaluate any transportation system, its operation while the vehicle is accelerating, decelerating, stopped, etc., should be considered. For this reason, it is necessary to simulate the HEV and observe the response of the traction drive over a driving cycle. Using ADVISOR (ADvanced Vehicle Simulator), an HEV model was simulated in ADVISOR over the Federal Urban Driving Schedule (FUDS), which is a standard 1369-second velocity profile of an average person’s vehicle on the way to work [7].

The inverter, in this study, uses sinusoidal PWM with a switching frequency of 20 kHz. The induction motor is rated at 31 kW, 230 V, 4-pole, 3000 rpm. The peak current passing through the switches is 136 A, and the peak voltage across them is the battery voltage \(V_{dc} \), which is 300 V in this case. Therefore, the MOSFETs and diodes have to be rated at least 400 V and 200 A. The Si MOSFETs are not available in this power range, and SiC MOSFETs are not yet available. For comparison purposes in this study, we will assume that Si MOSFETs exist at high power, too. Note that the drive is controlled by constant V/Hz control.

The following section will explain the device loss modeling approach [8].

IV. DIODE MODELING

A. Conduction losses:

The circuit in Fig. 8 is built to find the I-V characteristics of the diodes. The dc voltage supply is varied, and the diode forward voltage and current are measured. This test is carried out at several temperatures of up to 250°C.

The results for both Si pn and SiC Schottky diodes are given in Fig. 9, in which it can be seen that the forward voltage of the SiC diode is higher than that of the Si diode. This is expected because of SiC’s wider bandgap. Another difference between these two diodes is their high-temperature behavior. As the temperature increases, the forward characteristics of the Si diode change severely, while those of the SiC diode stay confined to a narrow region. Note that the pn diode (negative) and the Schottky diode (positive) have different polarity temperature coefficients; that is why the slope of the curve at higher currents is increasing in the Si diode case and decreasing in the SiC diode case with the temperature increase.

For the traction drive application, the forward characteristics of 200 A rated diodes are required. Assume...
The conduction losses for a SiC diode and for a Si diode are plotted in Figs. 11 and 12, respectively. These plots show that for low temperatures \((T < 55^\circ C) \), the conduction loss of the SiC diode is less than that of the Si diode, and vice versa for higher temperatures \((T > 55^\circ C) \). This is because the series resistance of the Schottky diode is increasing while that of the pn diode is decreasing. This increase seems to be a disadvantage in the SiC Schottky diode case; however, note that the Si diode cannot withstand temperatures of over 150°C.

B. Switching losses:

The most important part of the diode switching loss is the reverse recovery loss. The rest of the losses are negligible. Reverse recovery losses, in this paper, will be calculated experimentally.

For this purpose, the chopper circuit in Fig. 13 was built. The main switch Q is turned on and off at 1 kHz with a duty ratio of 75%. When Q is on, the diode D is off, and the current is forced by the dc supply to build up through the load and Q. When Q turns off, the load current starts flowing through D and the load. In this mode, the dc supply is out of the loop; therefore, the current starts decreasing. After a while, Q is turned on again and then D turns off. The typical diode turn-off waveforms are given in Fig. 14. These experimental waveforms show that the Si diode switching losses are almost three times more than those of the SiC diode.

The peak reverse recovery current, \(I_R \), and the switching loss, \(P_{sw} \), of the diodes are measured at different operating temperatures with varying load currents. The results are plotted in Figs. 15 and 16. In Fig. 15, the \(I_R \) of the Si diode is higher than that of the SiC diode at any operating temperature. As the temperature increases, the difference increases because the \(I_R \) of the Si diode increases with temperature, but that of the SiC diode stays constant. Note that the Si diode failed when operating at 150°C and 4.5 A,
while the SiC diode survived that temperature and failed at a higher 250°C and 4 A.

To obtain a 200 A diode model for the traction drive, assume as before that 20 of the diodes tested here are connected in parallel to form a 200 A diode. The switching losses multiplied by 20 gives the switching losses of the 200 A Si and SiC diodes (Fig. 16).

V. RESULTS

The HEV traction drive is simulated over the FUDS cycle using the model developed in the previous sections. The loss profiles of a diode and a MOSFET in the drive are shown in Fig. 17. SiC diode losses are lower than Si diode losses mostly because the SiC diode has lower reverse recovery losses. On the other hand, SiC MOSFET losses are lower because the switching losses are similar but SiC MOSFET conduction losses are lower. The reason for lower conduction losses is the lower specific on-resistance $[1] \left(R_{on,sp} (Si) = 180 \times 10^{-3} \text{Ω} \cdot \text{cm}^2, \ R_{on,sp} (4H-SiC) = 0.3 \times 10^{-3} \text{Ω} \cdot \text{cm}^2 \right)$.

Total energy loss (six diodes and six MOSFETs) is 925 W·s for the Si inverter and 338 W·s for the SiC inverter over the FUDS cycle. The corresponding efficiency (Fig. 18) of the Si inverter is 80–85%, while that of the SiC inverter is 90–95%. This is a 10 percentage points increase in the average efficiency. As a result, the battery in the HEV with the SiC inverter will need less charging than the one with the Si inverter.

The loss profiles in Fig. 17 are fed to the thermal models of the devices. The resulting junction temperature profiles are shown in Fig. 19. Natural air-cooled heatsinks are used to limit the junction temperature to 150°C for Si and 175°C for SiC. The latter temperature limit is found on the datasheet of the Infineon SiC Schottky diode used in this study [9]. The resulting heatsink volumes and masses for each device and each inverter are given in Table II. Using SiC devices instead of their Si counterparts in an HEV traction drive reduces the size and weight of the heatsink to one-third. Note that a heatsink usually occupies one-third

<p>| TABLE II |
| HEATSINK MASS AND VOLUME FOR EACH DEVICE AND INVERTER |</p>
<table>
<thead>
<tr>
<th>Volume (cm3)</th>
<th>Mass (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si diodes</td>
<td>444</td>
</tr>
<tr>
<td>SiC diodes</td>
<td>162</td>
</tr>
<tr>
<td>Si MOSFETs</td>
<td>1554</td>
</tr>
<tr>
<td>SiC MOSFETs</td>
<td>444</td>
</tr>
<tr>
<td>Si inverter</td>
<td>1998</td>
</tr>
<tr>
<td>SiC inverter</td>
<td>606</td>
</tr>
</tbody>
</table>

Fig. 13. Reverse recovery loss measurement circuit.

Fig. 14. Typical reverse recovery waveforms of the Si pn and SiC Schottky diode (2 A/div.).

Fig. 15. Peak reverse recovery values with respect to the forward current at different operating temperatures.

Fig. 16. Diode switching loss of 200 A diode at different operating temperatures.

Fig. 17. Total loss profile for a diode (top) and a MOSFET (bottom).
the volume of the converter and weighs more than the electronics. Theoretically, SiC devices can work at higher temperatures. If new packaging techniques are developed so that these higher temperatures could be used as the junction temperature limits, then the amount of cooling required would be less, and more weight and volume savings would be possible.

VI. CONCLUSIONS

Even the first SiC devices show the superiority of SiC compared with Si. One of the challenges for building SiC power devices is the contact material. In this paper, a new contact material, Au-As-Ni alloy, is introduced. The I-V characteristics of the SiC Schottky diodes built with this contact material show that it makes solid and reliable contact with SiC.

System studies show that power electronics systems using SiC power devices are on average 10 percentage points more efficient because of the low losses of the SiC power devices. Moreover, with their high-temperature operation capability, they have less stringent cooling requirements. In the HEV traction drive studied here, using SiC power devices saves 1392 cm³ of space and 3.75 kg of weight.

The weight reduction and efficiency increase result in an increase in the fuel economy of the vehicle and a longer lifetime for the battery.

Note that SiC technology is still in its infancy. More studies like the one detailed in this paper are required to forecast the impact of SiC power devices. When this technology matures, for power devices in the medium-to-high power range, the future will be SiC.

REFERENCES

