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Abstract— A fault diagnosis system in a multilevel-inverter using 
a compact neural network is proposed in this paper.    It is 
difficult to diagnose a multilevel-inverter drive (MLID) system 
using a mathematical model because MLID systems consist of 
many switching devices and their system complexity has a 
nonlinear factor. Therefore, a neural network classification is 
applied to the fault diagnosis of a MLID system. Multilayer 
perceptron (MLP) networks are used to identify the type and 
location of occurring faults from inverter output voltage 
measurement. The neural network design process is clearly 
described. The principal component analysis (PCA) is utilized to 
reduce the neural network input size. A lower dimensional input 
space will also usually reduce the time necessary to train a neural 
network, and the reduced noise may improve the mapping 
performance. The comparison between MLP neural network 
(NN) and PC neural network (PC-NN) are performed. Both 
proposed networks are evaluated with simulation test set and 
experimental test set. The PC-NN has improved overall 
classification performance from NN by about 5% points. The 
overall classification performance of the proposed networks is 
more than 90%. Thus, by utilizing the proposed neural network 
fault diagnosis system, a better understanding about fault 
behaviors, diagnostics, and detections of a multilevel inverter 
drive system can be accomplished. The results of this analysis are 
identified in percentage tabular form of faults and switch 
locations.  

Index Terms — Fault diagnosis, multilevel inverter, principal 
component, neural network. 

I.  INTRODUCTION 

In recent years, industry has begun to demand higher 
power ratings, and MLID systems have become a solution for 
high power applications. A multilevel inverter not only 
achieves high power ratings, but also enables the use of 
renewable energy sources. Two topologies of multilevel 
inverters for electric drive application have been discussed in 
[1]. The cascade MLID is a general fit for large automotive 
all-electric drives because of the high VA rating possible and 
because it uses several level dc voltage sources which would 
be available from batteries or fuel cells [1].  

A schematic of a single phase multilevel inverter system 
is illustrated in Fig. 1. Because multilevel inverter systems are 
utilized in high power applications, the reliability of the power 
electronics equipment is very important. For example, 
industrial applications such as industrial manufacturing are 
dependent upon induction motors and their inverter systems 
for process control. Generally, the conventional protection 
systems are passive devices such as fuses, overload relays, 
and circuit breakers to protect the inverter systems and the 

induction motors. The protection devices will disconnect the 
power sources from the multilevel inverter system whenever a 
fault occurs, stopping the operated process.  Downtime of 
manufacturing equipment can add up to be thousands or 
hundreds of thousands of dollars per hour, therefore fault 
detection and diagnosis is vital to a company’s bottom line. 

In order to maintain continuous operation for a multilevel 
inverter system, knowledge of fault behaviors, fault 
prediction, and fault diagnosis are necessary.   Faults should 
be detected as soon as possible after they occur, because if a 
motor drive runs continuously under abnormal conditions, the 
drive or motor may quickly fail.  

The various fault modes of a conventional PWM voltage 
source inverter (VSI) system for an induction motor are 
investigated in [2]. Then, the integration of a fault diagnosis 
system into VSI drives is described in [3]. This integration 
system introduced remedial control strategies soon after 
failure occurrences; therefore, system reliability and fault 
tolerant capability are improved.  

A noninvasive technique for diagnosing VSI drive 
failures based on the identification of unique signature 
patterns corresponding to the motor supply current Park’s 
Vector is proposed in [4]. A study of a machine fault 
diagnosis system by using FFT and neural networks is clearly 
explained in [5]. Also, a fault diagnosis system for rotary 
machines based on fuzzy neural networks is developed in [6].  
The possibilities offered by a neural network for fault 
diagnosis and system identification are investigated in [7]. 
Furthermore, a new topology with fault-tolerant ability that 
improves the reliability of multilevel converters is proposed in 
[8]. A method for operating cascaded multilevel inverters 
when one or more power H-bridge cells are damaged has been 
proposed in [9]. The method is based on the use of additional 
magnetic contactors in each power H-bridge cell to bypass the 
faulty cell. One can see from the literature survey that the 
knowledge and information of fault behaviors in the system is 
important to improve system design, protection, and fault 
tolerant control. Thus far, limited research has focused on 
MLID fault diagnosis. Therefore, a MLID fault diagnosis 
system is proposed in this paper that only requires 
measurement of the MLID’s voltage waveforms.  

An example of a MLID open circuit fault at switch SA+ is 
represented in Fig. 2.  SA+ fault will cause unbalanced voltage 
and current output, while the induction motor is operating. 
The unbalanced voltage and current may result in vital 
damage to the induction motor if the induction motor is run in 
this state for a long time. The unbalanced condition from fault 
SA+ can be solved if the fault location is correctly identified.  



Switching patterns and the modulation index of other active 
switches in the MLID can be adjusted to maintain output 
voltage and current in a balanced condition. Although the 
MLID can continuously operate in a balanced condition, the 
MLID will not be able to operate at its rated power.   
Therefore, the MLID can operate in a balanced condition at 
reduced power after the fault occurs until the operator 
identifies and replaces the failed switch.  
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Fig. 3. Structure of fault diagnosis system.

In this research, we will attempt to diagnose the fault 
location in a MLID from its output voltage waveform. MLID 
open circuit faults at each switch are considered.   Although 
the MLID system usually consists of three phases of H-bridge 
inverters and also can have short circuit faults, the fault 
diagnosis system will be the same topology as a single phase 
and open circuit case. Moreover, one level of a multilevel 
inverter is focused in this research; however, other inverter 
levels can be extended by using this proposed topology with 
more training data. The proposed network utilizes output 
voltage signals of the MLID to train the neural networks.  The 
acquired data is transformed by using Fast Fourier Transform 
technique to rate a signal value as an important characteristic 
[10]. Then, the PCA is performed to reduce the input neural 
size [11-12].  The signal feature extraction is discussed, and 
the process of neural network design is fully described. 

 

va 2

va 1
n

V dc

V dc

+

+

-

-

SDCS

SDCS

aV
A+S

A-S B-S

+BS

A+S

A-S

+BS

B-S

H-Bridge 1

H-Bridge 2

 
 

Fig. 1. Single-phase multilevel-inverter system 
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Fig. 2. H-Bridge 2, Switch SA+ open circuit fault at second level of single-
phase multilevel-inverter. 

 

 II. FAULT DIAGNOSIS SYSTEM  
 

A. Structure of Fault Diagnosis System  
 

The structure for a fault diagnosis system is illustrated in 
Fig. 3. The system is composed of four major states: feature 
extraction, neural network classification, fault diagnosis, and 
switching pattern calculation with gate signal output. The 
feature extraction, neural classification, and fault diagnosis are 
the focus of this research. The feature extraction performs the 
voltage input signal transformation, with rated signal values as 
important features, and the output of the transformed signal is 
transferred to the neural network classification. The networks 
are trained with both normal and abnormal data for the MLID; 
thus, the output of this network is nearly 0 and 1 as binary 
code. The binary code is sent to the fault diagnosis to decode 
the fault type and its location. Then, the switching pattern is 
calculated to reconfigure the MLID to bypass the failed level. 

B. Feature Extraction System and Principal Component 
Analysis  
 

Simulated and experimental output voltages are illustrated 
in Fig. 4.  As can be seen, the signals are difficult to rate as an 
important characteristic for classifying a fault hypothesis, and 
they have high correlation with each other. Therefore, a signal 
transformation technique is needed. The transformed signals 
using FFT of both simulation and experiment are represented 
in Fig. 5. Obviously, the results are satisfactory for identifying 
fault features. The FFT technique has a good identity feature to 
classify normal and abnormal features. However, many 
neurons are used to train the network (i.e. one neuron for each 
harmonic); therefore, PCA is used to reduce the number of 
input neurons as illustrated in Fig. 6. PCA is a method used to 
reduce the dimensionality of an input space without losing a 
significant amount of information (variability) [13].  The 
method also makes the transformed vectors orthogonal and 
uncorrelated. A lower dimensional input space will also 
usually reduce the time necessary to train a neural network, 
and the reduced noise (by keeping only valuable PCs) may 
improve the mapping performance.  The detail of PCA and 
neural network design will be discussed in the next section. 
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Fig. 4. (a) Simulation and  (b) experimental results of fault features at SA+, 

SA-, SB+, and SB- of H-bridge 2 with modulation index = 0.8 out of 1.0. 

 
C. Experimental Setup 
   

The experiment setup is represented in Fig. 7.  A three-
phase wye-connected cascaded multilevel inverter using 100 
V, 70 A MOSFETs as the switching devices was used to 
produce the output voltage signals. The Opal RT-Lab system is 
utilized to generate gate drive signals and interfaces with the 
gate drive board. The switching angles are calculated by using 
Simulink based on sinusoidal PWM. A separated individual 
12-volt dc power supply is supplied to each H-Bridge inverter 
in both simulation and experiment.  

 
Fault occurrence is created by physically removing the 

switch in the desired position. A Yokogawa DL 1540c is used 
to measure output voltage signals shown in Fig. 8 as ASCII 
files.  The measured signals are set to N =10032; sampling 
frequency is 200 kHz. The voltage spectrum is calculated and 
transferred to the neural network fault classification system.  
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Fig. 5. Signal transformation of (a) simulation and (b) experiment of output 

voltages by using FFT with modulation index = 0.8 out of 1.0. 
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Fig. 6. Principle Component Neural Network 

 

III. PRINCIPAL COMPONENT ANALYSIS (PCA) 

Basically, PCA is a statistical technique used to transform 
a set of correlated variables to a new lower dimensional set of 
variables which are uncorrelated or orthogonal with each 
other. A distinguished introduction and application of PCA 
has been provided by [14]. Also, PCA technique is possible to 
implement on floating point DSP for real-time applications as 
proposed in [15].  



 
Fig. 7. Experiment setup. 

 

The discussion of PCA presented in this section will be 
brief, providing only indispensable equations to elucidate the 
fundamental PCA approach applied to a fault diagnosis system 
in MLID. The fundamental PCA used in a linear 
transformation is illustrated in (1). The original data matrix, X 
of n variables (harmonic orders) and m observations (different 

to a new set of orthogonal principal components (PC), T, of 
equivalent dimension (m×k) as represented in (2). The 
transformation is performed such that the direction of first PC 
is identified to capture the maximum variation of the original 
data set. The subsequent PCs are associated with the variance 
of original data set in order; for instance, second PC indicates 
the second highest variance of the original data set, and 
likewise.            
 

modulation indices of output voltage of MLID) is transformed 

where:   

e m×k score matrix (transformed data) 

e 
X is the 

f observations  
ce  

P is the 

el 
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IV. PRINCIPAL COMPONENT NEURAL NETWORK 

 All fault features, as p eviously discussed, can be 
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(3)

Selecting a reduced subset (PCs kept in the model) of PC
e results in a reduced dimension structure with respect to 

the important information available as shown in (3). The 
objective of PC selection is not only to reduce the dimension 

 but also to keep the valuable components. Normally, 
high variance components could contain related information, 
whereas small variance components that are not retained are 
expected to contain unrelated information; for instance, 
measurement noise. It should be noted that the high variance 
components may not contain the useful information for a 
classification problem.  

 

structure,

             
                                   (a) 
 

(b) (c) 
 

                            (d)                                               (e)  
 

Fig. 8. Experiment of fault features at (a) normal,  (b) SA+ fault, (c) SA- fault,  
(d) SB+ fault, and  (e) SB- fault of H-bridge 2 with modulation index = 0.8 out 

of 1.0.

METHODOLOGY  
 

r
classified based upon their effects upon the output voltages. 
The transformation of output voltage signals is achieved by 
using FFT as shown by simulation and experimental results in 
Figs. 4, 5, and 8. As mentioned before, a systematic 
mathematical technique may be complicated to implement in 
the practical real time control system; therefore, a feed 
forward neural network technique permitting input/output 
mapping with a nonlinear relationship between nodes will be 
utilized [11]. Neural networks provide the ability to recognize 



anomalous situations because of their intrinsic capacity to 
classify and generalize. Especially, the sensitivity and 
response time of the original procedure presented for the on-
line analysis of fault set repetition enable on-line fault location 
techniques to be developed [7]. The fault diagnosis of MLID 
using a neural network has been proposed in [16]. The 
proposed network in [16] has many input neurons, which 
could consume significant time to train the network. 
Therefore, principle component analysis (PCA) is used to 
reduce the dimension of input space.  The stages of principle 
component neural network fault classification are explained in 
the following. 

 

A. Data Analysis 

m the FFT are transformed to principle 
m

data from both simulation and experiment 

 The data fro
co ponent space by using MATLAB statistic toolbox 
function, [PC, Latent, Explained]=PCACOV(XC); PC is the 
principal component loading matrix, Latent is the eigenvalues 
of the covariance matrix of the original input data (XC), and 
Explained is the vector of variance in each PC. The 
relationship of principal components and their cumulative 
percentage variance explained are illustrated in Fig. 9. As can 
be seen, the summation of the first 15 PCs contains about 90% 
of the data. However, the eigenvalues of the 14th, 15th and 
other PCs are less than 1; this means the PCs have less 
variance than the original data which might contain 
measurement noise or uncorrelated information.  We can see 
from the plot in Fig. 9 that the break is between 5 and 8 PCs; 
therefore, a study suggests that 5 or 8 PCs should be the 
optimum model.   
 The collected 
are analyzed to select valuable PCs for fault classification. 
The transformation matrix (Loading) for important PCs and 
the scores of samples of PCs are shown in Fig. 10. The first 5 
samples are normal condition, the next 5 samples are Fault 
A+, the next 5 samples are Fault A-, the next 5 samples are 
Fault B+, and the next 5 samples are Fault B-. The next 25 
samples are unknown samples for testing the proposed neural 
networks. Clearly, the first PC can be used to distinguish 
between normal and fault conditions. We can see that the first 
5 samples have positive scores, whereas the next 15 samples 
have mostly negative scores. We also see that the first PCs are 
weighted negatively toward most of the samples. 

0.4

0 5 10 15 20 25 30 35 40 45
-0.4

-0.2

0

0.2

Lo
ad

in
gs

 o
n 

P
C

#1

Variable

0 5 10 15 20 25 30 35 40 45 50
-5

0

5

10

S
co

re
s 

on
 P

C
#1

Sample  
(a) 

0 5 10 15 20 25 30 35 40 45
-0.4

-0.2

0

0.2

0.4

Lo
ad

in
gs

 o
n 

P
C

#4

Variable

0 5 10 15 20 25 30 35 40 45 50
-4

-2

0

2

4

6

S
co

re
s 

on
 P

C
#4

Sample  
(b) 

0 5 10 15 20 25 30 35 40 45
-0.4

-0.2

0

0.2

0.4

Lo
ad

in
gs

 o
n 

P
C

#3

Variable

0 5 10 15 20 25 30 35 40 45 50
-4

-2

0

2

4

6

S
co

re
s 

on
 P

C
#3

Sample  
(c) 

Fig. 10. The selected plot of pri components score and loading; (a) 
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Fig. 9. The plot of principal components versus eigenvalues. 

fe ures between Fault A+ and A- and Fault B+ and B-. 
However, the 3rd PC may not be useful because the 3rd PC 
could not reveal any classification information as shown in 
Fig. 10 (c), although it contains more information and 
variance (Eigenvalue) than the 4th. Therefore, in this research, 
the combination of 1, 2, 4, 6 and 8 principal components are 
used to perform the neural network classifications. The 3-D 



plots of PC scores are shown in Fig. 11. We can see that the 
classification between normal and faults could be a linear 
problem, whereas the classification among faults is a 
nonlinear problem. That is why the neural network is applied 
to solve this problem.  By using PCA, the size of input 
neurons can be reduced from 40 nodes to 5 nodes. (i.e. 5 
harmonics instead of 40 harmonic components) 
 

B. Neural Network Architecture Design 
ks, or MLP, are used 

 th

put/Output Data 
al input data at each MLID operation 

n

eural Network Training   
 training paradigm, trainlm is 

utili

                        

 The multilayer feed forward networ
in is research with two different neural networks (NN). The 
first NN architecture has one hidden layer with 40 input 
nodes, 4 hidden nodes, and 3 output nodes as proposed in 
[16]. The original data from the feature extraction system 
(FFT) is used in this network. The second NN architecture has 
one hidden layer with 5 input nodes, 3 hidden nodes, and 3 
output nodes. The PCA is applied in this network to reduce 
the number of input neurons.  The sigmoid activation function 
is used in both NNs: tansig for hidden nodes and logsig for an 
output node. A logsig activation function is used for an output 
node because the target output is between 0 and 1 [11, 16].   
 

C. In
 The set of origin
co tains 5 classes: a normal data (normal condition) and four 
abnormal data (Fault A+ A- B+ B-). The MLID operation will 
be changed with desired load, so modulation index must be 
changed. In this research, modulation indices are varied from 
0.6 to 1 with 0.05 intervals. Therefore, the original data 
contains 45 observers covering all possible operations.     The 
output target nodes are coded with a binary code as shown in 
the Table I. The round ( ) function is used to make the binary 
code outputs for the test sets.  
 

D. N
The Levenberg Marquardt
zed in this research because trainlm not only performs very 

fast training time but also has inherent regularization properties 
[11]. Regularization is a technique which adds constraints so 
that the results are more consistent. The 1% misclassification 
and 1% input data error rate are chosen to calculate a sum of 
square error goal, SSE; therefore, a SSE < 0.025 goal is used to 
train the network by calculating from (4). The training process 
will be finished when the SSE goal is met. 

n

( )∑
=

−=
i

iyySSE
1

2                             (4) 

where      y    is the output target binary codes, 
     iy    is output of training data, 
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Fig. 11. The 3-D plots of PC scores; (a) score on PC 6, 8, 1, (b) sc e 
on PC 2, 6, 1. 

or

E  Training and Testing Data Set Selection 
 

The training data set should also co
on, thus the training set is generated from simulation with 

various operation points (different modulation indices, 0.6, 0.7, 
0.8, 0.9 and 1). The testing sets have two different sources: 
first, the test set is generated from simulation with modulation 

 5(b) and 8. Training and testing sets have 200 kHz 
sampling frequency. Both data sets are transformed by FFT 
from 0 to 39 harmonic orders. Zero harmonic order means the 
dc component of the signals. Again, it should be noted that 
each modulation index has 5 classifications: normal, Fault A+, 
A-, B+ and B-. The test sets are used to examine the neural 
network classification performance.  It should be noted that the 
input training and testing data are scaled by using the mean 
center and unit variance method as explained in [16]. 

 

V.  FAULT CLASSIFICATION RESULTS  
 

ormance of the proposed networks is te
etw d e 

sets as previously mentioned. Second, the networks are 
evaluated with the experimental test set.  The tested results 
along with the testing data sets are illustrated in Table I. 
Clearly, in the simulation test set, both NN and PC-NN have a 
good classification performance (about 95%); therefore, the 
classification performance of the networks is quite satisfactory. 
The misclassification samples are the same operation point and 
class which are 0.65 modulation index and fault B-. This result 
suggests that both networks have confusion between Fault A- 
and Fault B- at low modulation index.  



TABLE I   
CONFUSION TABLE FOR MLID H-BRIDGE 

Actual Output % Classification Testing set Target 
NN PC-NN NN        PC-NN 

Normal 
[1  1  1] 1     1     

1     1     

1     1     1 
1     1     1 

1 
1 

1     1     1 
1     1     1 
1     1     1 
1     1     1 

100%       100% 
 

Fau
[0 

0     0     
lt A+ 

 0  1] 

1 
0     0     1 
0     0     1 
0     0     1 

0     0     1 
0     0     1 
0     0     1 
0     0     1 

100%         100% 

Fault A- 
[0  1  0] 

0     1     0 
0     1     0 
0     1     0 
0     1     0 

0     1     0 
0     1     0 
0     1     0 
0     1     0 

100%         100% 

Fault B+ 
[1  0  1] 

1     0     1 
1     0     1 
1     0     1 
1     0     1 

1     0     1 
1     0     1 
1     0     1 
1     0     1 

100%          100% 

Simulation test set 

Fault B- 
[1  1  0] 

1     1     0 
1     1     0 
1     1     0 
0     1     0 

1     1     0 
1     1     0 
1     1     0 
0     1     0 

75%            75% 

% Classification performance in simulation test set 95%            95% 

Normal 
[1  1  1] 

1     1     1 
1     1     1 
1     1     1 
1     1     1 

1     1     1 
1     1     1 
1     1     1 

 1      1     1 

100%           100% 

Fault A+ 
[0  0  1] 

0     1     1 
0     1     1 
0     1     1 
0     1     0 

0     0     1 
0     0     1 
0     0     1 
0     0     1 

75%              100% 

Fault A- 
[0  1  0] 

0     1     0 
0     1     0 
0     1     0 
0     0     1 

0     1     0 
0     1     0 
0     1     0 
0     1     0 

75%              100% 

Fault B+ 
[1  0  1] 

1     0     1 
1     0     1 
1     0     1 
1     0     1 

1     0     1 
1     0     1 
1     0     1 
1     0     1 

100%           100% 

Experimental test set 

Fault B- 
[1  1  0] 

1     1     0 
1     1     0 
1     1     0 
0     1     0 

1     1     0 
1     1     0 
1     1     0 
0     1     0 

75%              75% 

%Classification performance in experimental test set  85%                95% 
Total %Classification performance  90%                95% 

 

 
The second category of testing results is also illustrated in 

Table I. Obviously, the classification performance of PC-NN is 
better than NN by 10% points. The NN has 85 % classification 
performance, whereas the PC-NN has 95% classification 
performance. As expected, PCA conveys lower dimensional 
input space, reducing the time necessary to train a neural 
network. Also, the reduced noise could improve the mapping 
performance which leads to the improvement of total 
classification performance. Obviously, PC-NN has a better 
overall classification performance of about 5% points.  Again, 
the misclassification samples are mainly at 0.65 modulation 
index.  A study suggests that a new training set, or more 
training data, may be needed to accomplish a wide range of 
operation and also a better data transformation technique may 
be required.  Although the classification performance 
decreases at the lower operating point, the classification 
performance of the proposed networks is acceptable. 

VI. CONCLUSIONS  
 

A fault diagnosis system in a multilevel inverter using 
neural networks has been proposed. The proposed networks 
perform very well with both simulation and experimental 
testing data set. It should be noted that the test sets are not the 
same as the training sets. The test sets should be data that the 
networks have not ever seen before. The classification 
performance is very good, more than 90%.  Obviously, the 
results show that the PCA conveys lower dimensional input 
space and reduces the time necessary to train a neural network. 
Also, the reduced noise may improve the mapping 
performance which leads to the total classification 
performance. PC-NN has a better overall classification 
performance by about 5% points. 
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