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Speed Sensorless Identification of the Rotor Time Constant
in Induction Machines

Mengwei Li Campbell, John Chiasson, Marc Bodson, and
Leon M. Tolbert

Abstract—A method is proposed to estimate the rotor time constant
of an induction motor without measurements of the rotor speed/position.
The method consists of solving for the roots of a polynomial equation in
whose coefficients depend only on the stator currents, stator voltages, and
their derivatives. Experimental results are presented.

Index Terms—Induction motor, parameter identification, rotor time con-
stant.

I. INTRODUCTION

Induction motors are very attractive in many applications owing to
their simple structure, low cost, and robust construction. Field-oriented
control is now used to obtain high performance drive of the induction
motor because it gives control characteristics similar to separately ex-
cited dc motors. Implementation of a (rotor-flux) field-oriented con-
troller requires knowledge of the rotor speed and the rotor time con-
stant TR to estimate the rotor flux linkages. There has been consider-
able work done in the last several years to implement a field-oriented
controller without the use of a speed sensor [1]–[6]. However, many of
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these methods still require the value of TR, which can change with time
due to ohmic heating. That is, to be able to update the value of TR to
the controller as it changes is valuable. The work presented here uses
an algebraic approach to identify the rotor time constant TR without
the motor speed information. It is most closely related to the ideas de-
scribed in [7]–[12]. Specifically, it is shown that TR satisfies a poly-
nomial equation whose coefficients are functions of the stator currents,
the stator voltages, and their derivatives. A zero of this polynomial is
the value of TR. It is further shown that TR is not identifiable under
steady-state operation because the system is not sufficiently excited.

The note is organized as follows. Section II introduces a space vector
model of the induction motor. Section III uses this model to develop
a algebraic equation that TR must satisfy. Section IV shows that in
steady state, TR is not identifiable by either the proposed algebraic
method or a standard linear least-squares method. Section V presents
the experimental results, while Section VI gives the conclusions and
future work. A preliminary version of this work appeared in [13].

II. MATHEMATICAL MODEL OF INDUCTION MOTOR

The starting point of the analysis is a space vector model of the in-
duction motor given by (see, e.g., [14, p. 568])
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where iS
�
= iSa + jiSb,  

R

�
=  Ra + j Rb, and uS

�
= uSa + juSb.

Here, � is the position of the rotor, ! = d�=dt is the rotor speed,
np is the number of pole pairs, iSa; iSb are the (two-phase equiva-
lent) stator currents, Ra;  Rb are the (two-phase equivalent) rotor flux
linkages, RS ; RR are the stator and rotor resistances, respectively, M
is the mutual inductance, LS and LR are the stator and rotor induc-
tances, respectively, J is the moment of inertia of the rotor, and �L is
the load torque. The symbols TR = LR=RR, � = 1� (M2=LSLR),
� = M=�LSLR,  = (RS=�LS) + (�M=TR) have been used to
simplify the expressions. TR is referred to as the rotor time constant,
while � is called the total leakage factor.

III. ALGEBRAIC APPROACH TO TR ESTIMATION

The idea of the approach is to solve (1) and (2) for TR. However, (1)
and (2) are only four equations while there are six unknowns, namely
 Ra,  Rb, d Ra=dt, d Rb=dt, !, and TR. Equation (3) is not used
because it introduces the additional unknown �L. To find two more
independent equations, (1) is differentiated to obtain
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Using the (complex-valued) (1) and (2), one can solve for  
R

and
(d=dt) 

R
in terms of !, iS and uS and substitute the resulting ex-

pressions into (4) to obtain
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Solving (5) for d!=dt gives
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The left-hand side of (6) is real, so the right-hand side must also be
real. Note by (1) that diS=dt + iS � uS=(�LS) = (�=TR)(1 �
jnP!TR) 

R
so that the right-hand side of (6) is singular if and only if

j 
R
j = 0. Other than at startup, j 

R
j 6= 0 in normal operation of the

motor. Separating the right-hand side of (6) into its real and imaginary
parts, the real part has the form

d!

dt
= a2(uSa; uSb; iSa; iSb)!

2 + a1(uSa; uSb; iSa; iSb)!

+a0(uSa; uSb; iSa; iSb): (7)

The expressions for a2(uSa; uSb; iSa; iSb), a1(uSa; uSb; iSa; iSb),
and a0(uSa; uSb; iSa; iSb) are lengthy in terms of uSa , uSb, iSa, iSb,
and their derivatives as well as of the machine parameters including
TR. As a consequence, they are not explicitly presented here. Ap-
pendix VII-B gives their steady-state expressions.

On the other hand, the imaginary part of the right-hand side of (6)
must be zero. In fact, the imaginary part of (6) is a second degree poly-
nomial equation in ! of the form

q(!)
�
= q2(uSa; uSb; iSa; iSb)!

2 + q1(uSa; uSb; iSa; iSb)!

+q0(uSa; uSb; iSa; iSb) (8)

and, if ! is the speed of the motor, then q(!) = 0. The qi are functions
of uSa, uSb, iSa, iSb, and their derivatives as well as of the machine
parameters including TR. The expressions for q2(uSa; uSb; iSa; iSb),
q1(uSa; uSb; iSa; iSb), and q0(uSa; uSb; iSa; iSb) are also lengthy and
not explicitly presented here. (Their steady-state expressions are given
in Appendix VII-A.) If the speed was measured, then (8) would be
equal to zero and could then be solved for TR. However, in the problem
being considered, ! is not known. To eliminate !, q(!) in (8) is dif-
ferentiated to obtain

d

dt
q(!) = (2q2! + q1)

d!

dt
+ _q2!

2 + _q1! + _q0 (9)

where dq(!)=dt � 0 if ! is equal to the motor speed. Next, d!=dt in
(9) is replaced by the right-hand side of (7) so that (9) may be written
as

dq(!)

dt
= g(!) (10)

where g(!) is the third-order polynomial equation in ! (with time-
varying coefficients) given by

g(!)
�
= 2q2a2!

3 + (2q2a1 + q1a2 + _q2)!
2

+(2q2a0 + q1a1 + _q1)! + q1a0 + _q0

for which the speed of the motor is one of its roots. Dividing1 g(!) in
(10) by q(!) in (8), g(!) may be rewritten as (q2 6= 0 if ! and the
stator electrical frequency !S are nonzero. See [6], [15])
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1

q2
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r0(uSa; uSb; iSa; iSb)
�
= q2q1a0 + q2 _q0 � 2q2q0a1

+ q0q1a2 � q0 _q2: (13)

If ! is equal to the speed of the motor, then both g(!) = 0 and q(!) =
0, and one obtains

r(!)
�
= r1(uSa; uSb; iSa; iSb)!+ r0(uSa; uSb; iSa; iSb) = 0: (14)

This is now a first-order polynomial equation in ! which uniquely
determines the motor speed ! as long as r1 (the coefficient of !) is
nonzero. (It is shown in Appendix VII-C that r1 6= 0 in steady state if
q2 6= 0.) Solving for the motor speed ! using (14), one obtains

! = �r0=r1: (15)

Next, replace ! in (8) by the expression in (15) to obtain

q2r
2

0 � q1r0r1 + q0r
2

1 � 0: (16)

The expressions for qi, ri are in terms of motor parameters (including
TR) as well as the stator currents, voltages, and their derivatives. Ex-
panding the expressions for q0, q1, q2, r0, and r1, one obtains a twelfth-
order polynomial equation in TR, which can be written as

12

i=0

Ci(uSa; uSb; iSa; iSb)T
i
R = 0: (17)

Solving (17) gives TR. The coefficients Ci(uSa; uSb; iSa; iSb) of (17)
contain third-order derivatives of the stator currents and second-order
derivatives of the stator voltages making noise a concern. For short time
intervals in which TR does not vary, (17) must hold identically with TR
constant. In order to average out the effect of noise on the Ci, (17) is
integrated over a time interval [t1; t2] to obtain

12

i=0

1

t2 � t1

t

t

Ci(uSa; uSb; iSa; iSb)dt T iR = 0: (18)

The measured variables appear into the coefficients of (17) in a non-
linear manner, so that it would be difficult to quantify exactly how much
noise is filtered out. However, assuming a sufficient frequency separa-
tion between the noise and the signal, one would expect that such fil-
tering would help and the experimental results presented below bear
this out.

1Given the polynomials ( ) ( ) in with deg ( ) =
deg ( ) = , the Euclidean division algorithm ensures that there

are polynomials ( ) ( ) such that ( ) = ( ) ( ) + ( )
and deg ( ) deg ( ) 1 = 1. Consequently if, for
example, is a zero of both ( ) and ( ), then it must also be a zero of
( ).
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There are 12 solutions satisfying (18). However, simulation results
have always given 10 conjugate solutions. The remaining two solutions
include the correct value of TR while the other one was either negative
or close to zero. The method is to compute the coefficients (1=(t2 �
t1))

t

t
Cidt and then compute the roots of (18). Among the positive

real roots is the correct value of TR. Experimental results using this
method are presented in Section V.

Remark: The expression (14) was used by the authors in [6], [20]
(assuming TR is known) as a technique to estimate the speed of an
induction motor for speed sensorless field-oriented control.

IV. IDENTIFIABILITY OF TR IN STEADY STATE

The goal of this section is to show that TR is not identifiable with the
machine in steady-state because it is not sufficiently excited. We show
this explicitly for the method proposed here and then show it explicitly
for a linear least-squares formulation. The terminology “steady state”
means the machine is running at constant speed and the voltages/cur-
rents are in steady state.

A. Algebraic Approach

The polynomial (18) is now considered with the machine in steady-
state so that, in particular, the speed is constant. That is, uSa+ juSb =
USe

j! t and iSa + jiSb = ISe
j! t are substituted into (8) and (14)

where !S is the electrical frequency. In steady state, the motor speed
in (15) becomes (see Appendix VII-C and [15])
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np
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where S
�
= (!S � np!)=!S is the normalized slip. Substituting the

steady-state expressions for q2, q1, and q0 from Appendix VII-A as
well as the expression (19) for ! into (8), one obtains
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That is, in steady state (8) and (14) hold independent of the value of
TR and thus so does (17) making TR unidentifiable in steady state by
this method.

B. Linear Least-Squares Approach

Vélez-Reyes et al. [3], [4] have used least-squares methods for si-
multaneous parameter and speed identification in induction machines.
In the approach used herein, d!=dt is taken to be zero so that a linear (in
the parameters) regressor model can be obtained. Specifically, consider
the mathematical model of the induction motor in (5). With d!=dt = 0
this equation reduces to
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where iS = iSa+jiSb and uS = uSa+juSb. Decomposing (20) into
its real and imaginary parts gives
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The goal here is to estimate TR without knowledge of !. So, it is now
assumed the motor parameters are all known except for TR. The set of
(21) and (22) may then be rewritten in regressor form as

y(t) = W (t)K (23)

whereK
�
= [1=TR np!]

T 2 2, and y 2 2,W 2 2�2 are given by
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�
=
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d i
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LS
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� uSb +RSiSb ��LS

di
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+ uSa �RSiSa

The regressor system (23) is linear in the parameters. The stan-
dard linear least-squares approach is to let (i.e., collect data at)
t = 0; T; 2T; . . . ; NT , multiply (23) on the left by WT (nT ), sum
WT (nT )y(nT ) = WT (nT )W (nT )K from t = 0 to t = NT , and
finally compute the solution to

RWK = RYW (24)

where

RW
�
=

N

n=0

WT (nT )W (nT ) RYW
�
=

N

n=0

WT (nT )y(nT ):

A unique solution to (24) exists if and only if RW is invertible. How-
ever, RW is never invertible in steady state as is now shown.2 To pro-
ceed, define

D(t) =
iSb(t) �iSa(t)

iSa(t) iSb(t)
:

In steady state where uSa + juSb = USe
j! t and iSa + jiSb =

ISe
j! t, det(D(t)) = i2Sa(t) + i2Sb(t) = jIS j

2, D(t)TD(t) =
jIS j

2I2�2. Multiply both sides of (23) on the left by D(t) to obtain

D(t)y(t) = D(t)W(t)K

or

RS!S jIS j
2 � !SP
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2

S jIS j
2 � !SQ

=
�!SLS jIS j

2 +Q RS jIS j
2 � P

RS jIS j
2 � P �LS!S jIS j

2 �Q
K (25)

2In [4], the machine is run at constant speed, but not in steady state.
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where P
�
= uSaiSa + uSbiSb and Q

�
= uSbiSa � uSaiSb are the real

and reactive powers, respectively, whose steady-state expressions are
given by (30) and (31) in the Appendix. Using (30) and (31) to replace
P and Q in (25), one obtains

�D
�
=D(t)W (t)
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1
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That is, in steady state, �D
�
= D(t)W(t) 2 2�2 and �Y

�
= D(t)y(t) 2

2 are constant matrices. Further, it is easily seen that the determinant
of �D

�
= D(t)W(t) is zero. Also,
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2
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2RW :

RDW is singular asD(t)W(t) is constant and singular. It then follows
that RW is also singular using steady-state data. Furthermore
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Thus, RW and RYW are given by
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where again �D and �Y are from (26) and (27), respectively.
By inspection of (28) and (29), K = [0 !S ]

T is one solution to
(24). The null space of RW is generated by [�1=TR S!S]

T so that all
possible solutions are given by [0 !S ]

T + �[�1=TR S!S]
T for some

� 2 . In summary, solving (24) using steady-state data leads to an
infinite set of solutions so that TR is not identifiable using the linear
regressor (23) with steady-state data.

Remarks: There are a few ways to avoid the singularity problem
in a real-time control application. For example, a small perturbation
could be added to the speed reference. This type of technique has often
been used for the adaptive control of insufficiently excited systems.
A more interesting approach, however, would be to vary the flux ref-
erence while keeping the torque reference constant. The speed of the
motor would not vary, but the voltages and currents would no longer
be in sinusoidal steady-state, so that the speed and the rotor time con-
stant would be identifiable. In [4], a linear regressor was obtained by
assuming constant speed, but the data collected in [4] was not in sinu-
soidal steady state (see [4, Figs. 7.1a and 7.1b]). In the identification
method given in [16], the speed is assumed constant, but it requires the
flux magnitude be perturbed by a small amplitude sinusoidal signal so
it is also not in sinusoidal steady state.

Fig. 1. Sampled two-phase equivalent voltages .

Fig. 2. Sampled phase current and its simulated response .

V. EXPERIMENTAL RESULTS

To demonstrate the viability of the speed sensorless estimator (18)
for TR, experiments were performed. A three-phase, 0.5 hp, 1735 rpm
(np = 2 pole� pair) induction motor was driven by an ALLEN-
BRADLEY PWM inverter to obtain the data. Given a speed command
to the inverter, it produces PWM voltages to drive the induction motor
to the commanded speed. Here a step speed command was chosen to
bring the motor from standstill up to the rated speed of 188 rad/s. The
stator currents and voltages were sampled at 10 kHz so that the sample
period is Ts = 0:0001 s. The real-time computing system RTLAB
from OPAL-RT with a fully integrated hardware and software system
was used to collect data [17]. Filtered differentiation (using digital fil-
ters) was used for the derivatives of the voltages and currents. Specif-
ically, the signals were filtered with a third-order Butterworth filter
whose cutoff frequency was 100 Hz. The voltages and currents were put
through a 3-2 transformation to obtain the two-phase equivalent volt-
ages uSa; uSb, which are plotted in Fig. 1 and with the corresponding
two-phase equivalent currents iSa; iSb shown in Fig. 2.

Using the data fuSa; uSb; iSa; iSbg collected between 0.84 and 0.91
sec (Tb

�
= 0:91� 0:84 = 0:07 sec is the batch data collection period),

which includes the time the motor accelerates, the quantities duSa=dt,
duSb=dt, diSa=dt, diSb=dt, d2iSa=dt

2, d2iSb=dt
2, d3iSa=dt

3,
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d3iSb=dt
3 are calculated and used to evaluate the coefficients Ci,

i = 1; 2; � � � ; 12 in (18). Solving (18), one obtains the 12 solutions

TR1 = + 0:1064

TR2 = � 0:0186

TR3 = � 0:0576 + j0:0593

TR4 = � 0:0576� j0:0593

TR5 = � 0:0037+ j0:0166

TR6 = � 0:0037� j0:0166

TR7 = � 0:0072+ j0:0103

TR8 = � 0:0072� j0:0103

TR9 = + 0:0125+ j0:0077

TR10 = + 0:0125� j0:0077

TR11 = + 0:0065+ j0:0018

TR12 = + 0:0065� j0:0018:

TR must be a real positive number, soTR = 0:1064 is the only possible
choice. This value compares favorably with the “cold” value of TR =
0:11 obtained using the method of Wang et al. [18], [21] which required
a speed sensor.

To illustrate the identified TR, a simulation of the induction motor
model was carried out using the measured voltages as input. The simu-
lation’s output [stator currents computed according to (1) and (2)] are
used to compare with the measured (stator currents) outputs. Fig. 2
shows the sampled two-phase equivalent current iSb and its simulated
response iSb�sim. (The phase a current iSa is similar, but shifted by
�=(2np).) The resulting phase b current iSb�sim from the simulation
corresponds well with the actual measured current iSb. Note that in (1)
the parameter  = (RS=�LS) + (�M=TR) also depends on TR.

VI. CONCLUSION AND FUTURE WORK

This note presented a algebraic approach to the estimation of the
rotor time constant of an induction motor without using a speed sensor.
The experimental results demonstrated the practical viability of this
method. Though the method is not applicable in steady state, neither is
a standard linear least-squares approach. Future work includes studying
an on-line implementation of the estimation algorithm and using such
an online estimate in a speed sensorless field-oriented controller.

APPENDIX

STEADY-STATE EXPRESSIONS

In the following, !S denotes the stator frequency and S denotes the
normalized slip defined by S

�
= (!S�np!)=!S . With uSa+ juSb =

USe
j! t and iSa + jiSb = ISe

j! t, it is shown in [19] that under
steady-state conditions, the complex phasors US and IS are related by
(Sp

�
= RR=�!SLR = 1=�!STR)

IS =
US

RS + j!SLS 1 + j S

S
= 1 + j S

�S

=
US

RS +
(1��)S! L T

1+S ! T
+ j

! L (1+�S ! T )
1+S ! T

and straightforward calculations (see [6], [15], and [20]) give

P
�
=uSaiSa + uSbiSb = Re (USI

�

S)

= jIS j
2 RS +

(1� �)S!2SLSTR
1 + S2!2ST

2
R

(30)

Q
�
=uSbiSa � uSaiSb = Im (USI

�

S)

= jIS j
2 !SLS 1 + �S2!2ST

2
R

1 + S2!2ST
2
R

: (31)

A. Steady-State Expressions for q2, q1, and q0

The steady-state expressions for q2, q1, and q0 are (see [6], [15], and
[20])

q2 =n2pT
2
RjIS j

4 !
2
SLS(1� �)2(1� S)

� (1 + S2!2ST
2
R)

(32)

q1 =np!S jIS j
4LS(1� �)2 1� !2ST

2
R(1� S)2

� (1 + S2!2ST
2
R)

(33)

q0 = � jIS j
4 !

2
SLS(1� �)2(1� S)

� (1 + S2!2ST
2
R)

: (34)

With ! 6= 0 (equivalent to S 6= 1), it is seen that q2 6= 0. Conversely,
q2 = 0 if and only if S = 1 (i.e., ! = 0). Also, if ! = 0, then S = 1
and q1 6= 0.

B. Steady-State Expressions for a2, a1, a0

The steady-state expressions for a2, a1, and a0 are (see [6], [15], and
[20])

a2 = � n2pjIS j
4 !S(1� �)2

�2 (1 + S2!2ST
2
R)

1

den
(35)

a1 =npjIS j
4 2!

2
S(1� �)2(1� S)

�2 (1 + S2!2ST
2
R)

1

den
(36)

a0 = � jIS j
4 !

3
S(1� �)2(1� S)2

�2 (1 + S2!2ST
2
R)

1

den
(37)

den
�
=npTRjIS j

4 (1� �)

�TR

1 + S2!2ST
2
R � S!2ST

2
R

1 + S2!2ST
2
R

2

+
(1� �)

�

!S
1 + S2!2ST

2
R

2

: (38)

Recall from Section III [following (6)] that den = 0 if and only if
j 

R
j = 0.

C. Steady-State Expressions for r1 and r0

It is now shown that the steady-state value of r1 in (12) is nonzero.
Substituting the steady-state values of q2, q1, q0, a2, a1, and a0 (noting
that _q1 � 0 and _q2 � 0 in steady state) into (12) gives

r1 = � jIS j
6 1

1 + S2!2ST
2
R

3 n4p(1� �)6L2
S

�4
!3S

� 1 + T 2
R!

2
S(1� S)2

2
=den

r0 = jIS j
6 1

1 + S2!2ST
2
R

3 n3p(1� �)6L2
S

�4
!4S(1� S)

� 1 + !2ST
2
R � (1� S)2

2
=den

where den is given by (38). It is then seen that r1 6= 0 in steady state.
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Comments on “Optimizing Simultaneously Over
the Numerator and Denominator Polynomials in the

Youla-Kucera Parameterization”

Fikret A. Aliev and Vladimir B. Larin

Abstract—It is noted that the parameterization of the set of stabilizing
regulators was first presented in a monograph by Larin V.B., Naumenko
K.I., and Suntsev V.N.

These comment were prompted by the recent note [1] which, in its
historical survey of parameterization of feedback systems, has over-
looked reference [2]. We use this opportunity to re-iterate the fact that
[2] was the first known publication that presented the parameteriza-
tion of the set of stabilizing regulators, definitely before [3], as also
acknowledged in [4] (see, for instance, the comment to [4, ref [29]]). It
appears that the Youla–Bongiorno parameterization was rediscovered
a couple of years later, but most probably without any knowledge of
[2]. A discussion on parameterization can also be found in [5].
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We would like to thank F.A. Aliev and V.B. Larin for their comments
on [7], namely for bringing to our attention apparently the first publi-
cation [1] that presented a parametrization of all stabilizing controllers
for a given plant.

The parametrization is obtained in [1] in the context of solving a
linear-quadratic control problem with stability, in the frequency do-
main, applying the Wiener–Hopf approach. The free parameter rep-
resents a function to be varied in order to minimize the cost while as-
suring stability of the closed-loop system for any plant, stable or un-
stable, minimum phase or nonminimum phase. The exposition of the
subject is elegant and instructive, showing why the parameter should
be a linear combination of specific closed-loop transfer functions.

The setting of the best-known publication [2] on the parametrization
result is the same; just the construction of the free parameter is slightly
different, making full use of polynomial matrix fractions.

Reference [3] approaches the feedback system stability directly, in
an algebraic manner, without any appeal to an optimization problem, to
show that the set of stabilizing controllers for a given plant corresponds
to the solution set of a Bézout equation. Since the solution set can be
parametrized, the explicit controller parametrization immediately fol-
lows [4].

The algebraic nature of the parametrization result was further em-
phasized in [5]. A survey of research directions advanced by this fun-
damental result is presented in [6].
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