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Elimination of Harmonics in a Multilevel Converter
Using the Theory of Symmetric Polynomials and
Resultants
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Abstract—A method is presented to compute the switching
angles in a multilevel converter so as to produce the required fun-
damental voltage while at the same time not generate higher order
harmonics. Previous work has shown that the transcendental
equations characterizing the harmonic content can be converted
to polynomial equations which are then solved using the method of
resultants from elimination theory. A difficulty with this approach
is that when there are several dc sources, the degrees of the poly-
nomials are quite large making the computational burden of their
resultant polynomials (as required by elimination theory) quite
high. Here, it is shown that the theory of symmetric polynomials
can be exploited to reduce the degree of the polynomial equations
that must be solved which in turn greatly reduces the computa-
tional burden. In contrast to results reported in the literature that
use iterative numerical techniques to solve these equations, the
approach here produces all possible solutions.

Index Terms—Multilevel inverter, resultants, symmetric polyno-
mials.

1. INTRODUCTION

MULTILEVEL inverter is a power electronic device built

to synthesize a desired ac voltage from several levels of dc
voltages. For example, the output of solar cells are dc voltages,
and if this energy is to be fed into an ac power grid, a power
electronic interface is required. A multilevel inverter is ideal for
connecting such distributed dc energy sources (solar cells, fuel
cells, the rectified output of wind turbines) to an existing ac
power grid. Transformerless multilevel inverters are uniquely
suited for these applications because of the high power ratings
possible with these inverters [1]. The devices in a multilevel
inverter have a much lower dV/dt per switching, and they
operate at high efficiencies because they can switch at a much
lower frequency than pulseiwdth modulation (PWM)-con-
trolled inverters. Three, four, and five level rectifier-inverter
drive systems that have used some form of multilevel PWM as
a means to control the switching of the rectifier and inverter
sections have been investigated in [2]-[6]. Here, a fundamental
frequency switching scheme (rather than PWM) is considered
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because, as just mentioned, this results in significantly lower
switching losses.

A key issue in the fundamental switching scheme is to de-
termine the switching angles (times) so as to produce the fun-
damental voltage and not generate specific higher order har-
monics. Here, an harmonic elimination technique is presented
that allows one to control a multilevel inverter in such a way
that it is an efficient low total harmonic distortion (THD) in-
verter that can be used to interface distributed dc energy sources
to a main ac grid or as an interface to a traction drive powered
by fuel cells, batteries or ultracapacitors. Harmonic elimination
techniques go back to the work of Hoft and Patel [7], [8], and
the recent book by Holmes and Lipo [9] documents the current
state of the art of such techniques.

Previous work in [10]-[14] has shown that the transcen-
dental equations characterizing the harmonic content can be
converted into polynomial equations which are then solved
using the method of resultants from elimination theory [15],
[16]. However, if there are several dc sources, the degrees of
the polynomials in these equations are large. As a result, one
reaches the limitations of the capability of contemporary com-
puter algebra software tools (e.g., MATHEMATICA or MAPLE)
to solve the system of polynomial equations using elimination
theory (by computing the resultant polynomial of the system).
A major distinction between the work in [10]-[14] and the
work presented here is that here it is shown how the theory
of symmetric polynomials [17] can be exploited to reduce the
degree of the polynomial equations that must be solved so that
they are well within the capability of existing computer algebra
software tools. As in [12], the approach here produces all
possible solutions in contrast to iterative numerical techniques
that have been used to solve the harmonic elimination equa-
tions [18]. Furthermore, in the experiments reported here, an
induction motor load is connected to the three-phase multilevel
inverter, and the current as well as the voltage waveforms are
collected for analysis. The fast Fourier transforms (FFTs) of
these waveforms show that their harmonic content is close to
the theoretically predicted value. A preliminary (oral) presen-
tation of this work was given at [19] (see also [20] and [21]).

II. CASCADED H-BRIDGES

A cascade multilevel inverter consists of a series of H-bridge
(single-phase full-bridge) inverter units. The general function of
this multilevel inverter is to synthesize a desired voltage from

1063-6536/$20.00 © 2005 IEEE
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Fig. 1. Single-phase structure of a multilevel cascaded H-bridges inverter.

several separate dc sources (SDCSs), which may be obtained
from solar cells, fuel cells, batteries, ultracapacitors, etc. Fig. 1
shows a single-phase structure of a cascade inverter with SDCSs
[1]. Each SDCS is connected to a single-phase full-bridge in-
verter. Each inverter level can generate three different voltage
outputs +Vy., 0 and —V;. by connecting the dc source to the
ac output side by different combinations of the four switches,
St, S2, S3 and S4. The ac output of each level’s full-bridge in-
verter is connected in series such that the synthesized voltage
waveform is the sum of all of the individual inverter outputs.
The number of output phase voltage levels in a cascade muli-
tilevel inverter is then 2s + 1, where s is the number of dc
sources. An example phase voltage waveform for an 11-level
cascaded multilevel inverter with five SDCSs (s = 5) and five
full bridges is shown in Fig. 2. The output phase voltage is given
by vgn = v1 + vz + vz + v4 + v5. With enough levels and an
appropriate switching algorithm, the multilevel inverter results
in an output voltage that is almost sinusoidal.

III. MATHEMATICAL MODEL OF SWITCHING FOR THE
MULTILEVEL CONVERTER

Following the development in [12] (see also [22]-[24]), the
Fourier series expansion of the (staircase) output voltage wave-
form of the multilevel inverter as shown in Fig. 2 is

S
n=1,3 . n
X (cos(nby) + cos(nfa) + - - - + cos(nb,)) sin(nwt)

4V,

™

V(wt)

ot

ey

where s is the number of dc sources. Ideally, given a desired
fundamental voltage V7, one wants to determine the switching
angles 61,...,0; so that (1) becomes V(wt) = V; sin(wi). In
practice, one is left with trying to do this approximately. The
goal here is to choose the switching angles 0 < #; < 0y <
-+ < 0, < /2 s0 as to make the first harmonic equal to the
desired fundamental voltage V7 and specific higher harmonics
of V(wt) equal to zero. As the application of interest here is a
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Fig. 2. Output waveform of an 11-level cascade multilevel inverter.

three-phase system, the triplen harmonics in each phase need
not be canceled as they automatically cancel in the line-to-line
voltages. Specifically, in the case of s = 5 dc sources, the desire
is to cancel the fifth, seventh, 11th, and 13th-order harmonics as
they dominate the THD. The mathematical statement of these
conditions is then

4V,
Wd (cos(by) 4 cos(fa) + - - + cos(;3)) =V;

cos(501) + cos(56z) + - - - + cos(565) =0
cos(701) + cos(70z) + - - - + cos(T5) =0
cos(1160y) + cos(1165) + - -+ + cos(1165) =0
cos(136y) + cos(1365) + - - - + cos(1365) =0.

©))

This is a system of five transcendental equations in the five un-
knowns 64, 05, 03, 64, 85. The question here is “When does the
set of (2) have a solution?”. One approach to solving this set of
nonlinear transcendental (2) is to use an iterative method such
as the Newton—Raphson method [22]-[25]. In contrast to itera-
tive methods, here a new approach is presented that produces all
possible solutions and requires significantly less computational
effort than the approach in [12]. To proceed let s = 5, and, as
in [12], define x; = cos(#;) fori = 1,..., 5. Using the trigono-
metric identities

cos(56) = 5cos(8) — 20 cos®(A) + 16 cos® ()
cos(70) = — Tcos(f) + 56 cos>(#) — 112 cos®(6)
+ 64 cos’(8)
cos(116) = — 11 cos(#) + 220 cos®(#) — 1232 cos”(#)
+ 2816 cos”(#) — 2816 cos”(6) 4 1024 cos™ (8)
cos(136) =13 cos(8) — 364 cos®(8) + 2912 cos®(8)
— 9984 cos”(8) + 16640 cos(6)
— 13312 cost(8) 4 4096 cos3(8)
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the conditions (2) become

pl(x)éxl +zotastarit+azs—m=0

[s]
ps(z) £ (5zi — 2027 + 1625) =0
i=1

pr(e) & 37 (~Tas + 5603 — 11227 + 6407) =0
=1

9]

> (— 11w, + 22027 — 123227 + 2816x]
=1

1>

P11(SC)

—2816z] +1024z}') =0

pus(z) 2 (13z; — 364a + 29122 — 9984x]
=1
+16 64027 — 13312z + 40962,°) = 0

3)

where = (z1,Z2,%3,24,25) and m 2 Vi/(4Vy. /7). The
modulation index is m, = m/s = V;/(s4V,./7) (Each in-
verter has a dc source of V. so that the maximum output voltage
of the multilevel inverter is sVy.. A square wave of amplitude
sV results in the maximum fundamental output possible of
Vi max = 45‘/:16/71- S0 Mg = Vvl/‘/l max — 1/1/(54‘/dc/7'r) =
m/s).

This is a set of five equations in the five unknowns z1, zs, T3,
x4, 3. Further, the solutions must satisfy 0 < z5 < --- < x5 <
z1 < 1. This development has resulted in a set of polynomial
equations rather than trigonometric equations. In [10]-[12], the
authors considered the three-dc source case (seven levels) and
solved the corresponding system of three equations in three un-
knowns using elimination theory by computing the resultant
polynomial of the system (In [26], polynomial systems were
also used, but solved by an iterative method). It turns out this
procedure can be used for the four-dc source case (nine levels),
but requires several hours of computation on a Pentium III.
However, when one goes to five dc sources (11 levels), the com-
putations using contemporary computer algebra software tools,
e.g., the Resultant command in MATHEMATICA [27]) on a Pen-
tium III (512 Mb RAM) appear to reach their limit (i.e., the au-
thors were unable to get a solution before the computer gave
out memory error messages). This computational complexity is
because the degrees of the polynomials are large which in turn
requires the symbolic computation of the determinant of large
n X n matrices. Here, a new approach to solving the system (3)
is presented which greatly reduces the computational burden.
This is done by taking into account the symmetry of the poly-
nomials making up the system (3). Specifically, the theory of
symmetric polynomials [15], [28] is exploited to obtain a new
set of relatively low-degree polynomials whose resultants can
easily be computed using existing computer algebra software
tools. Further, in contrast to results reported in the literature that
use iterative numerical techniques to solve these type of equa-
tions [18], the approach here produces all possible solutions.

IV. SOLVING POLYNOMIAL EQUATIONS

For the purpose of exposition, the three source (7 level) mul-
tilevel inverter will be used to illustrate the approach. The con-
ditions are then

-
pi(z) Exitas+a3—m=0, m= 4Vic
5 ™
ps(z) 2 (5zi — 2027 +1625) =0
=1
3
pr(z) £ (=Tz; 4 562) — 11227 + 642]) = 0. (4)
=1

Eliminating 3 by substituting x5 = m — (z1 + x2) into p3, pr
gives

ps(z1, 29) =5z — 202% + 162° + 59 — 20x2 + 16235
+5(m —zy —x2) — 20(m — ¢y — )3
+16(m — z1 — x2)5

pr(zy, 29) = — Ty + 5623 — 11223 + 64| — Txo + 5613
— 112z5 + 64al — T(m — x1 — x2)
+56(m — xy — x2)% — 112(m — 21 — 5)°

+64(m — z1 — 29)" (5)
where
deg,, {ps(w1,72)} =4 deg,, {ps(z1,72)} =4
deg, {p7(z1,22)} =6 deg, {pr(v1,22)} =6. (6)

A. Elimination Using Resultants

In order to explain the computational issues with finding the
zero sets of polynomial systems, a brief discussion of the pro-
cedure to solve such systems is now given. The question at
hand is “Given two polynomial equations a(x1,x2) = 0 and
b(x1,x9) = 0, how does one solve them simultaneously to elim-
inate (say) x27” A systematic procedure to do this is known as
elimination theory and uses the notion of resultants [15], [16].
Briefly, one considers a(xy,x2) and b(x1,z2) as polynomials
in x5 whose coefficients are polynomials in 1. Then, for ex-
ample, letting a(z1, z2) and b(z1, 25) have degrees 3 and 2, re-
spectively, in z», they may be written in the form

a(zy,z2) = a3($1)$g + a2($1)56§ + ag(x1)ze + ag(zy)
b(x1,z5) = bo(x1)23 + b1 (21)To + bo(71)-

The n x n Sylvester matrix, where n = deggc2 {a(z1,x2)} +
deg, {b(z1,72)} = 342 =5, is defined by

ao(scl) 0 bo(&()l) 0 0

al(scl) ao(SCl) bl(SCl) bo(.%'l) 0
Sap(x1) = | an(zy) ar(zy) ba(zy) bi(xr) bolwr)
a3($1) ag(sm) 0 bg(&ﬁ) b1 (56'1)
0 az(z1) 0 0 ba(1)
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The resultant polynomial is then defined by
r(x1) = Res (a(zy,x2),b(x1,22), x2) 2 det Sap(xz) (7)

and any solution (219, Z20) of a(x1,z2) = 0 and b(x1,29) =0
must have r(x19) = 0 [15]-[17].

Regarding the converse of this result, that is, does r(x1¢)
det S, 3(x10) = 0 imply that there exists an xag such that

2

a(x10,®20) = b(x10, T20) = 07.

Not necessarily. However, the answer is yes if either of the
leading coefficients in x2 of a(z1,z2), b(x1,z2) are not zero
at z1g, i.e., ag(l'lo) ;é 0 or bg(l’lo) ;é 0 (see [15]—[17] for a
detailed explanation). Further, the finite number of solutions of
r(x1) = 0 are the only possible candidates for the first coordi-
nate (partial solutions) of the common zeros of a(z1, ) and
b(x1,x2). Whether or not a partial solution extends to a full so-
lution is simply determined by back solving and checking the
solution.

B. Symmetric Polynomials

Consider once again the system of polynomial (5). In [12]
(see also [10] and [11]), the authors computed the resultant poly-
nomial of the pair {ps(«1,zs),p7(x1,22)} to obtain the solu-
tions to (4). This involved setting up a 10 x 10 Sylvester matrix
(10 = deg,, {ps(x1,x2)}+deg,, {p7(x1,z2)}) and then com-
puting its determinant to obtain the resultant polynomial 7(z1 )
whose degree is 22. However, as one adds more dc sources to the
multilevel inverter, the degrees of the polynomials go up rapidly.
For example, in the case of four dc sources, the final step of
the method requires computing (symbolically) the determinant
of a 27 x 27 Sylvester matrix to obtain a resultant polynomial
of degree 221. In the case of five sources, using this method,
the authors were only able to get the system of five polynomial
equations in five unknowns to reduce to three equations in three
unknowns. The computation to get it down to two equations in
two unknowns requires the symbolic computation of the deter-
minant of a 33 x 33 Sylvester matrix. This was attempted on a
PC Pentium III (512 Mb RAM), but after several hours of com-
putation, the computer complained of low memory and failed to
produce an answer. To get around this difficulty, a new approach
is developed here which exploits the fact that the polynomials
in (3) are symmetric.

The polynomials pi(z), ps(x), p7(z) in (4) are symmetric
polynomials [28], [29], that is

pi(w1, 22, 73) = pi(Tr(1)s Tn(2), Tn(z)) foralli =1,5,7

and any permutation. 7(-)! Define the elementary symmetric
functions (polynomials) s1, so, 3 as

A
81 =1 +x2 + I3
aN
89 =x1%2 + X1T3 + T2T3

83 él’ﬁb’gl’g. (8)

IThat is, pi(21, ®2, 23) = pi(x2, &1, 23) = pi(x3, T2, 21), etc.
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A basic theorem of symmetric polynomials is that they can be
rewritten in terms of the elementary symmetric functions [28],
[29] (this is easy to do using the SymmetricReduction com-
mand in MATHEMATICA [27]). In the case at hand, it follows that
with s = (81, $2, 83) and using (8), the polynomials (4) become

pi(s) =s1 —m
ps(s) =bsy — 203? + 163‘;’ + 605159 — 803?32 + 80313%
— 6053 + 805753 — 805953
pr(s) = — Tsy + 5655 — 11257 4 6457 — 1685155 4 5605559
— 4485255 — 5605155 + 89655 52 — 44851 55
+ 168s3 — 5605255 + 4485753 + 5605253
— 134457 5953 + 4485353 + 44851 53. )

One uses p1(s) = s; — m = 0 to eliminate s1 so that

q5(82, 83) 2 ps(m, s2, s3) = 5m — 20m> + 16m°
+ 60mss — 80m332 + 80m3§
— 6053 + 80m”s3 — 805953
qr(s2, 83) =pr(m, s2,83) = —Tm + 56m>
— 112m® + 64m” — 168ms,
+ 560m3sy — 448mP°so — 560ms3
+ 896m3s2 — 448mss + 168s3
— 560m%s; + 448m*s3 + 5605253
— 1344m>2 5955 + 4483%33 + 448m8§
where
deg,, {g5(52,83)} =2,
deg, {q7(s2,53)} =3,

d6853 {g5(s2,83)} =1
deg53 {q7(327 33)} =2

The key point here is that degrees of these polynomials in ss, s3
are much less than the degrees of ps(z1, x2), pr(z1, 22) in 4,
9 as shown in (6). In particular, the Sylvester matrix of the pair
{g5(s2, 83), g7(s2, 83) } is 3 x 3 (if the variable s3 is eliminated)
rather than being 10 x 10in the case of {p5(x1, x2), p7(x1,22)}
in (5). Eliminating s3, the resultant polynomial 7y, ,.(s2) is
given by

Tqs5.97 (52) = Res (q5(527 53)7 q7(527 53)7 53)
=—16m x (—1575 + 9800m” — 24 080m*

+28160m° — 15360m® + 3072m!°
— 1050055 + 56 000m2s9

— 103040m™* sy + 78 080mCs,

— 20480m®s5 — 1960053

+ 89600m>2s2 — 116 480m™*s2

+ 46 080m°s3 — 1120055

+ 44 800m”s3 — 35 840m4s§>
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which is only of degree 3 in s,. For each m, one

would solve 7, o.(s2) = 0 for the roots {sa;},_; ;.

These roots are then used to solve g¢s(sqi,s3) =

for the root s3; resulting in the set of 3-tuples
1592,93 1,52,53) = 9 92¢9°3¢ )i=1,..,3

(s1,82,83) € C3 | (81,592,83) = (m, 82, 83;)

as the only possible solutions to (9).

C. Solving the Symmetric Polynomials

For each solution triple (s1, $2, $3), the corresponding values
of (21,2o,23) are required to obtain the switching angles.
Consequently, the system of polynomial equations (8) must
be solved for the z;. To do so, one simply uses the resultant
method to solve the system of polynomials

filzi,z0,23) =s1 — (x1 + 22+ x3) =0
fa(@1, 22, 23) = s2 — (w19 + T103 + T213) =0

fa(zy, 2, 03) = 853 — 2122203 = 0.
That is, one computes

r1(w2, v3) = Res (f1(w1, 2, 23), fo(w1, 22, 73), 21)
= — 89+ $1xo — x% + 81x3 — Tox3 — xg
7'2(56'2,5(}3) =Res (f1 (.T1,.Z'2,.Z'3),f3($1 ,.1'2,5(,'3),.%'1)

2 2
= — 83+ 81T2T3 — ToT3 — Taly
so that

r(z3) =Res(r1 (22, x3), ro(22,23),22)

= (33—82x3+31x§—x§)2. (10)
The procedure is to substitute the solutions of (9) into
(10) and solve for the roots {x3;}. For each z3;, one
then solves 7{(x2,x3;) for the roots ;. Finally, one
solves fi(x1,%2;,23,) = 0 for x1; to obtain the triples
{(z1,20,73) = (w15, 205, 23:) 1 = 1,2,3,j = 1,2} as the
only possible solutions to (4). This finite set of possible so-
lutions can then be checked as to which are solutions of (4)
satisfying 0 < z3 < 29 < 71 < 1.

V. FIvVE-dc SOURCE CASE

In this section, the five-dc source case is summarized. The

polynomials p1 (), p5(z), p7(x), p11(z), p13(x) in (3) are sym-
metric polynomials [28], [29], and the elementary symmetric
functions (polynomials) s1, s, S3, $4, S5 are defined as

aN
$1=x1+x2+x3+x4+ 25
aN
89 =X1%9 + T1X3 + T1Ta + T1X5 + T2X3 + ToZa + T2T5
+ 314 + X325 + 1425
A
83 =T1X2T3 + L1TaXy + T1X2T3 + T1T3%4 + T1X3%5
+ 124T5 + TaT3X 4 + T2X3T5 + LoT4X5 + T3X4T5
aN
§4 =T1X2L3%T4 + T1X2X3T5 + T1X2X4T5 + T1X3L4T5
+ Tox33475

A
85 =X1X2X3T4T5.

Rewriting the polynomials p;(x) in terms of the elementary
symmetric polynomials gives
(11)
ps(s) =551 — 2085 + 165° + 605155 — 805359 + 805155

— 6053 + 805755 — 805953 — 805154 + 8055

=0 12)

pr(s) = —Ts1 + 5657 — 1125 + 6457

— 1685155 + 5605559 — 44855 55 — 56051 52

+ 8965553 — 4485155 + 16853 — 56057 53

+ 4483%33 + 56089583 — 13443%3233 + 4483%33

+ 4485153 + 5605154 — 4485554 + 89651 5954

— 4485354 — 56055 + 4485755 — 4485555

p1(s) =81 —m=0

-0 (13)
pr1(s) = —11s; 4+ 22083 — 123255 +--- =0 (14)
p13(s) = 13s; — 36455 +291257 ... =0 (15)

where the complete expressions for py1(s) and py3(s) are rather
long and their exact expressions are not needed for the explana-
tion here. One uses py(s) = s; —m = 0 to eliminate s so that
A
q5(52, 83, 54, 85) = ps(m, 82, 83, 54, 53)
A
q7(s2, 83, 54, 85) = pr(m, 82, 83, 54, 85)
A
gtt (827 53, 84, 85) = P11 (mv 52,53, 84, 85)

A
q13(827 53, 84, 85) = p13(m7 89,83, 54, 85)

where
deg s9 deg s3 deg s4 deg s5
g5(s) 2 1 1 1
q7(s) 3 2 1 1
gi1 (S) 5 3 2 2
q13(s) 6 4 3 2

The key point here is that the maximum degrees of each of these
polynomials in sa, s3, $4, S5 are much less than the maximum
degrees of pi(x), ps(z), pr(x), p11(x), pia(x) in z1, zs, z3,
T4, T3 as seen by comparing with their values given in the table
below.

degree in 1,290,233, 14,75
p5($€1,x2,x3,x4,x5) 3]
pr(x1, To, T3, T4, 25) 7
p11(21, @9, T3, T4, T5) 1
p13(21,To, T3, T4, T5) 13

Consequently, the computational burden of finding the resultant
polynomials (i.e., the determinants of the Sylvester matrices) is
greatly reduced. Also, as each of the ¢;(s)’s has its maximum
degree in s2, the overall computational burden is further re-
duced by choosing this as the variable that is not eliminated. Pro-
ceeding, the indeterminate s; is eliminated first by computing
Tgs.q7 (52, 83, 54) =Res (gs(s2, 83, 54, 55)
q7(527 53, 54, 55)7 55)
Tgs,qn (52, 83, 54) = Res (g5(s2, 83, 84, 85)
q11(82, 83, 84, 85), 85)
Tas,a15 (52, 53, 54) =Res (g5(s2, 53, 54, 55)

q13(52, 53, 54, 85), S5)

(16)
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where
deg ss deg s3 deg sy
Tqs.q7 (82, 83, 84) 2 2 1
Tgs.q11 (52, 83, 84) 4 3 2
Tgs.q1(52, 83, 84) 5 4 2

Eliminating s from these three polynomials gives the two poly-
nomials
A
701(527 53) =Res (TQ57Q7 (527 83, 54)7
Tgs5,911 (527 83, 34)7 34)

r9(89, 83) £ Res (745,47 (82, 83, 84),

Tqs.q13 (82733734)754) (17)
where
deg sy deg s3
7'1(82, 83) 6 4
T2(827 83) 7 3

Finally, eliminating s3 from 71(s2, s3) and r3(s2, 53), one ob-
tains the resultant polynomial

7(s2) =Res (r1(s2, 83), 72(52, 53), 53)
=Cm" (5 —20m” + 16m*)
x (=35 + 140m” — 140m* + 32m°® — 355,
+140m>s9 — 112m432)4g(82)

where C is a constant and g(s>) is a polynomial of degree
9. One then back solves these equations for the five tuples
(81, 82, 83, 84, 85) that are solutions to the system of polyno-
mial equations (11)—(15).

To obtain the corresponding values of (1, s, T3, 4, 5) for
each of the solutions (si, sa, 53, 54, §5), elimination theory is
again used to solve the system of polynomial equations as shown
in Section IV-C.

Remark: Rather than using resultants, one could com-
pute the Grobmer basis of polys =  {gs(s2, 83,54, 3),
q7(527 53, 54, 535, )7 q11(52; 535 54, 55)7 q13(527 53, 54, 55)} to
find the solutions. However, it was found that the com-
putation of this basis is slow (Using the command
GroebnerBasis[polys, {s2,s3,s4,s5}] MATHEMATICA
was unable to compute the answer after running more than
9 hours on a 1.2 MHz, Pentium III with 0.5 G of RAM.).
On the other hand, the computation using resultants was less
than a minute. This may be due to the fact that some of the
intermediate resultant expressions (see (16), (17)) factor so that
the computation of the resultant polynomial is simplified by
working with these factors individually rather than the whole
expression.

VI. COMPUTATIONAL RESULTS

Using the fundamental switching scheme of Fig. 2, the solu-
tions of (2) were computed using the method described above.
These solutions are plotted in Fig. 3 versus the parameter 7. As
the plots show, for m in the intervals [2.21, 3.66] and [3.74, 4.23]
as well as m = 1.88, 1.89, the output waveform can have the
desired fundamental with the 5th, 7th, 11th, 13th harmonics ab-
sent. Further, in the subinterval [2.53, 2.9] two sets of solutions
exist while in the subinterval [3.05, 3.29], there are three sets of
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Fig. 3. Switching angles versus m for the five-dc source multilevel converter
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Fig. 4. THD versus m for each solution set (m, = m/s with s = 5).

solutions. In the case of multiple solution sets, one would typi-
cally choose the set that gives the lowest THD. In those intervals
for which no solutions exist, one must use a different switching
scheme (see [14] and [30] for a discussion on such possibili-
ties). The corresponding THD was computed out to the 31st ac-
cording to

THD = 100 x (| V2T V7 T Vi + Vi + Vi +- -+ Vg
‘/'12
where
Vi = (4Vye/nm) (cos(nby) + cos(nds) + - - - + cos(nb,)) is

the amplitude of the nth harmonic term of (1). The THD
versus m is plotted in Fig. 4 for each of the solution sets shown
in Fig. 3. As this figure shows, one can choose a particular
solution for the switching angles such that the THD is 6.5% or
less for 2.25 < m < 4.23 (0.45 < m, < 0.846). For those
values of m for which multiple solution sets exist, an
appropriate choice is the one that results in the lowest THD. A
look at Fig. 4 shows that this difference in THD can be as
much as 3.5%, which is significant.
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Fig. 5. Phase a output voltage waveform (m = 3.2) using the solutions set
with the lowest THD and its normalized FFT.

VII. EXPERIMENTAL RESULTS

The same experimental setup described in [12] was used for
this work. It is a three-phase 11-level (five dc sources) wye-con-
nected cascaded inverter using 100-V 70-A MOSFETs as the
switching devices [31]. A battery bank of 15 SDCS of 36-V
dc (not shown) each feed the inverter (five SDCS per phase).
In this work, the RT-LAB real-time computing platform from
Opal-RT-Technologies Inc. [32] was used to interface the com-
puter to the multilevel inverter. This system allows one to im-
plement the switching algorithm as a lookup table in SIMULINK
which is then converted to C' code using RTW (real-time work-
shop) from Mathworks. The RT-LAB software provides icons to
interface the SIMULINK model to the digital I/O board and con-
verts the C code into executables. The step size for the real time
implementation was 32 ps.

Note that while the calculations for the lookup table of Fig. 3
requires some offline computational effort, the real-time imple-
mentation is accomplished by putting the data of Fig. 3 in a
lookup table and therefore does not require high computational
power for implementation.

The multilevel converter was attached to a three-phase induc-
tion motor with the following nameplate data: 1/3 hp, rated cur-
rent 1.5 A, 1725 rpm, 208 V (RMS line-to-line at 60 Hz). In
the experiment, m = 3.2 was chosen to produce a fundamental
voltage of Vi = m (4Vy./m) = 3.2(4 x 36/7) = 146.7V
along with f = 60 Hz. As can be seen in Fig. 4, there are three
different solution sets for /m = 3.2. The solution set that gave
the smallest THD (= 2.65% see Fig. 4) was used. Fig. 5 shows
the phase a voltage and its corresponding FFT showing that the
fifth, seventh, 11th, and 13th are absent from the waveform as
predicted. The THD of the line-line voltage was computed using
the data in Fig. 5 and was found to be 2.8%, comparing favor-
ably with the value of 2.65% predicted in Fig. 4. Fig. 6 contains
a plot of both the phase a current and its corresponding FFT
showing that the harmonic content of the current is less than the
voltage due to the filtering by the motor’s inductance. The THD
of this current waveform was computed using the FFT data and
was found to be 1.9%.

Current vs Time (m = 3.2; Lowest THD) Normalized FFT vs Frequency (m = 3.2)
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Fig. 6. Phase a current corresponding to the voltage in Fig. 5 and its
normalized FFT.

VIII. CONCLUSION

A procedure to eliminate harmonics in a multilevel inverter
has been given which exploits the properties of the transcen-
dental equations that define the harmonic content of the con-
verter output. Specifically, it was shown that one can transform
the transcendental equations into symmetric polynomials which
are then further transformed into another set of polynomials in
terms of the elementary symmetric functions. This formulation
resulted in a drastic reduction in the degrees of the polynomials
that characterize the solution. Consequently, the computation
of solutions of this final set of polynomial equations could be
carried out using elimination theory (resultants) as the required
symbolic computations were well within the capabilities of con-
temporary computer algebra software tools. This methodology
resulted in the complete characterization of the solutions to the
harmonic elimination problem. Experiments were performed,
and the data presented corresponded well with the predicted re-
sults. Though not presented here, the authors have been suc-
cessful solving for the angles for the case of seven dc sources.
However, as one increases the number of dc sources, the degrees
of polynomials representing the harmonic elimination equations
increase as well and, thus, the dimension of Sylvester matrices.
Even with the use of the symmetric polynomials, one will even-
tually run into computational difficulty with the symbolic com-
putation of the determinants of the Sylvester matrices. Recent
work of [33], [34] is promising for the efficient symbolic com-
putation of these determinants.
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