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An Online Rotor Time Constant Estimator for the Induction Machine
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Abstract—Indirect field-oriented control of an induction ma-
chine requires knowledge of the rotor time constant to estimate
the rotor flux linkages. Here, an online method is presented for
estimating the rotor time constant and the stator resistance, both
of which vary during operation of the machine due to ohmic
heating. The method uses measurements of the stator voltages,
stator currents, and their derivatives (first derivative of the volt-
ages and both the first and second derivatives of the currents). The
problem is formulated as finding those parameter values that best
fit (in a least-squares sense) the model of the induction motor to
the measured output data of the motor. This method guarantees
that the parameter values are found in a finite number of steps.
Experimental results of an online implementation are presented.

Index Terms—Induction motor, parameter identification, rotor
time constant.

1. INTRODUCTION

HE field-oriented control method provides a means to
T obtain high-performance control of an induction machine
for use in applications such as traction drives. This field-ori-
ented control methodology requires knowledge of the rotor
fluxes which are not usually measured [1], [2]. To circumvent
this problem, the rotor fluxes are estimated using an observer,
and this observer requires the value of the rotor time constant.
The rotor time constant varies due to ohmic heating, and the
work presented here is a method which allows the value of the
rotor time constant to be updated during normal operation of
the machine.

The induction motor parameters consist of M (the mutual in-
ductance), Lg, Lg (the stator and rotor inductances), Rg, Rg
(the stator and rotor resistances), and .J (the inertia of the rotor).
Standard methods for the estimation of induction motor param-
eters include the blocked rotor test, the no-load test, and the
standstill frequency response test. However, these approaches
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cannot be used online, that is, during normal operation of the
machine.

The interest here is in tracking the value of T as it changes.
A model-based approach is considered here, which uses mea-
surements of the stator currents, stator voltages, and rotor posi-
tion to find the parameter values that best fit this data set to the
model in a least-squares sense. Using these measurements, the
first derivative of the stator voltages, both the first and second
derivatives of the stator currents, and the derivative of the rotor
angle are all computed (reconstructed) for use in the estimation
algorithm. The method is implemented online, and experimental
results of the tracking of Tk are presented.

Because the rotor state variables are not available measure-
ments, the system identification model cannot be made linear in
the parameters without overparameterizing the model (see [3]
for a discussion of the problems encountered due to noise when
trying to identify the induction motor parameters using an over-
parameterized model). In the work here, the model is reformu-
lated so that it is a nonlinear system identification problem that
is not overparameterized. It is shown that the parameter vector
that minimizes the least-squares (residual) error can be found
in a finite number of steps (this is in contrast to [3], where the
induction motor parameters are found solving a constrained op-
timization problem via an iterative numerical algorithm).

In [4], the authors formulated and solved a nonlinear least-
squares problem to estimate all of the identifiable parameters
(0,Tgr, Rs, Lg) of the motor based on input/output data. In this
brief, only the two parameters that change due to ohmic heating,
namely T and Rg, are estimated and implemented online. This
is an important special case because, as explained before, the
rotor time constant is required in the standard flux estimation
scheme used in field-oriented control. (The value of Ry is also
estimated so that its effect on the estimation of T’ is accounted
for properly.) Further, by only estimating these two parameters,
the numerical conditioning of the problem is improved and the
(sufficient) excitation requirements of the system are reduced.
More specifically, it is shown next that constant speed measure-
ments (with the motor under load) are sufficient to determine
Tr and Rg, which is not true if all the parameters are estimated
as in [4]. Thus, the ability of the algorithm to track variations
in T’r is improved. Further, in contrast to [4], the algorithm is
implemented online and the experiments are carried out using
a pulse width modulation (PWM) inverter rather than the three
phase voltages from a utility outlet. Preliminary versions of the
present work have appeared in [5] and [6], but again, in both
of these works, the algorithm was not implemented online and
the experiments were not done using a standard PWM inverter.
Finally, an error index and a parametric error index are derived
and presented as measures of performance of the estimation al-
gorithm, which was not done in [4].

1063-6536/$25.00 © 2007 IEEE
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A combined parameter identification and velocity estimation
problem is discussed in [7]-[9], where the speed is assumed to
be slowly varying. In [10] and [11] a linear least-squares ap-
proach was used for parameter estimation and solved by as-
suming a slowly varying speed. In the paper by Marino et al.
[12], the rotor time constant (rotor resistance) and the stator
resistance were estimated using a dynamic estimation scheme
that was shown to converge under some mild conditions (ro-
tating field in the air gap). Castaldi et al. [13] also developed a
dynamic estimation scheme based on adaptive control/observer
techniques. The approach presented here is not dynamic, and
thus, the issue of convergence does not arise. However, suffi-
ciency of excitation is a concern, and it will be shown that the
conditions to ensure this are satisfied in normal operation of the
machine. For a summary of the various techniques for tracking
the rotor time constant, the reader is referred to the recent survey
[14], the recent paper [15], and to the book [16].

This brief is organized as follows. Section II introduces a
standard induction motor model expressed in the rotor coor-
dinates. Then, an overparameterized model which is linear in
the unknown parameters is derived and discussed. Section IV
presents the identification scheme for the rotor time constant
by reducing the overparameterized linear model to a nonlinear
model, which is not overparameterized. An approach to solve
the resulting nonlinear (in the parameters) least-squares identi-
fication problem is presented and shown to guarantee that the
minimum least-squares solution is found in a finite number of
steps. Section VI presents the results of the identification algo-
rithm using experimental data.

II. INDUCTION MOTOR MODEL

Standard models of induction machines are available in the
literature. Parasitic effects such as hysteresis, eddy currents,
magnetic saturation, and others are generally neglected. Con-
sider a state-space model of the system given by (cf. [2], [17],

[18])

dflia - Tl[_l Ra + Bnpwire — Visa + iusa
% N T[_l Ry~ Bnpwra — Yise + iwb
dqsf - TLRT/,R,, +npwira + T_Azii“%
Ccli_(:f) - ]}/[;; (isb¥Ra — isa¥Rb) — %L @

where w = dfl/dt with # as the position of the rotor, n,, is the
number of pole pairs, ¢5,,%sp are the (two-phase equivalent)
stator currents, ¥gq, ¥ gy are the (two-phase equivalent) rotor
flux linkages, and us,, usp are the (two-phase equivalent) stator
voltages.

The parameters of the model are the five electrical parame-
ters, Rs and Ry (the stator and rotor resistances), M (the mu-
tual inductance), Ls and Ly (the stator and rotor inductances),

and the two mechanical parameters, .J (the inertia of the rotor)
and 77, (the load torque). The symbols

Tr = Lr/Rg
o=1-M?/(LsLg)
B=M/(cLsLg)
v = Rs/(cLs)+ M*Rg/ (cLsL})

have been used to simplify the expressions. T’ is referred to as
the rotor time constant while o is called the total leakage factor.

This model is transformed into a coordinate system attached
to the rotor. For example, the current variables are transformed

according to
|:i5z:| _ [ cos(n,0) sin(npﬁ)] {zga]

p =1 _ p . 2)

isy sin(n,0) cos(nyb) | | isp
The transformation simply projects the vectors in the (a,b)
frame onto the axes of the moving coordinate frame. An ad-
vantage of this transformation is that the signals in the moving
frame [i.e., the (x,y) frame] typically vary slower than those
in the (a, b) frame (they vary at the slip frequency rather than
at the stator frequency). At the same time, the transformation
does not depend on any unknown parameter in contrast to the
field-oriented (or dq) transformation. The stator voltages and
the rotor fluxes are transformed in the same way as the currents
resulting in the following model ([10], [11]):

dzliz - :fZ B 7i5$+TﬂRwRI + npfwry + npwisy (3)
d% - :ZQ N “'SWT%#’Ry — npfwiRe — npwis, (4)
dzgizz — TKRz’Sx - TLRq/;Rz )
= s v ©)

(2_;} = Z(\fgz, (isyVRre — 152VRy) — T7L (7

III. LINEAR OVERPARAMETERIZED MODEL

As stated in the introduction, the interest here is in online
tracking of the value of Ty as it changes due to ohmic heating so
that an accurate value is available to estimate the flux for a field
oriented controller. Howeyver, the stator resistance value Rg will
also vary due to ohmic heating so that its variation must also
be taken into account. The electrical parameters M, Lg, and
o are assumed to be known and not varying. Measurements of
the stator currents ¢ g, , ¢s5 and voltages us,, usy, as well as the
position 6 of the rotor are assumed to be available; velocity is
then reconstructed from the position measurements. However,
the rotor flux linkages are not assumed to be measured.

Standard methods for parameter estimation are based on
equalities where known signals depend linearly on unknown
parameters. However, the induction motor model described be-
fore does not fit into this category unless the rotor flux linkages
are measured. The first step is to eliminate the fluxes ¥'r., YRy
and their derivatives dyr,/dt,dyr,/dt. The four equations
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(3), (4), (5), and (6), can be used to solve for Yrg, YRy,
dyr. /dt, di g, /dt, but one is left without another independent
equation to set up a regressor system for the identification
algorithm. Consequently, a new set of independent equations is
found by differentiating (3) and (4) to obtain
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oLsTgr + isy’npr'LsTR

dlSz
—oLgT
X(O’S a

i
%npwaLsTl% + wigynpwaLsT}%

+iseniw?oLsTh — npwThusy + TRqu> . (1D

1 dqu _ inSz +7dZS$ _ ﬂd'l/}Rx —n ﬁw dl/’Rll
oL, dt dt? dt Tr dt P dt This set of equations may be rewritten in regressor form as
dw dig dw
npﬂ"/}RyE P Wy anSyE )
y(t)=W(Et)K (12)
and
5. . where W € R?*®, K € R® are given at the bottom of the page
L dusy _d Zgy disy _ ﬁdwRy + 1w dlew and y € R? is given by and
oLs dt dt dt Tr dit
dw dig, dw d dw disy 2\ dug, /dt
PR+ MW — = + Myise—r. ) E dgf —Nplsy gy —Npw o g ‘U2 Pisa —dvaL;dt
gt T pise G Hnpw s —niw? MBisy, —=25
Next, (3), (4), (5), and (6) are solved for Yrs, YRy, )
dyre/dt,dr,/dt and substituted into (8) and (9) to ob- As M*/Lg (R_/ [Sl) _+U)f’15/’ [{\438(1/; )(]\(/}2/2 (?/U’
tain 0l = s/oLls ols R R) =
(Rs/oLs) + (1/oLs)(1/Tr)(1 — o)Lg it is shown that y
0— dZis, disy 1 dusy 1\ disy and W depend only on known quantities while the unknowns
T 4 ar v + oLs dt vt Tr) dt Rgs,Tr are contained only within the parameter vector K. The
i < BM N ) N < N B M) components of the parameter vector K are related as
T}% TR v T TR K3 = K2
L+ US n dw . dw 1 K KQK
——— 4+ npy——lsy — Np—— =
oLsTg  Pdt ° " "Pdt oLs (1 + n2w?T2) T
s K;=1/K,
X <_ dty - ViSyULSTR - 7;S.?:np“)o—LST’R KG = KI/KQ
diga , K7 = K1/K;
- npwaLsTR ’YZSZ’ILPLUO'LsT}% Ke = 1/K§ (13)
+isynpw® o LsTf + npwTRus, + TRUSy> (10) showing that only the two parameters K, K» are independent.
. inSy disy . 1 dus, . 1\ dis, These two parameters determine Rg and Tr by
a2~ dt " ons at \' " TR) dt Tp =1/K,
: pM v . pM
- 4 ) Rs =0LsK; — (1 —0)LsKo>. 14
isy < 2 " Ty 152 Mpw TR—i— T s sKi —( )Ls K> (14)
usy d_w ise 7 d_w 1 Though the system regressor is linear in the parameters, it is
oLsTgr R S (1+ nngT}%) overparameterized, resulting in poor numerical conditioning if
wal dilstm dtST +npwisy+npwMPisy+ 55 MPisy —isa 1y d:iStJ (flL: +nj, (WZch(li_o; —w? dfii)
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—n, dige o dw +n? (wzsyi—‘: —w? dilst” ) —n3wlise (14 MPB)+ o1 (n2wusy +npuss 42)
- w . . w 7 7 w 12 1Sy '”'2 w u
nyisy i —npwise  np (isaw i —wt9GE) 0y (w A ) +% Fnpw’ = o (wuse G —w’ 1)
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= 7 73 oo AR R
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standard least-squares techniques are used. A more serious dif-
ficulty with identifying such an overparameterized model is that
the K/s that are obtained do not necessarily satisfy the con-
straints (13), leaving the engineer with the problem of extracting
v and T'r from these inconsistent parameter values. Note also
that v and T’y can be estimated from K7 and K5 as in (14), but
K5 and K could also be used, as well as many other combina-
tions of parameters. How should this be done, given that the es-
timates are not equally precise due to various sensitivities in the
least-squares criterion? The method proposed here avoids this
issue altogether by minimizing the error while ensuring satis-
faction of the constraints. This is described in Section I'V.

IV. LEAST-SQUARES IDENTIFICATION [19]-[21]

Equation (12) can be rewritten as

y(nT) = W(nT)K (15)
where 1" is the sample period, n1" is the nth sample time at
which a measurement is taken, and K is the vector of unknown
parameters. If the constraint (13) is ignored, then the system is
an overparameterized linear least-squares problem. In this case,
theoretically an exact unique solution for the unknown param-
eter vector K may be determined after several time instants.
However, several factors contribute to errors which make (15)
only approximately valid in practice. Specifically, both y(nT)
and W (nT) are measured through signals that are noisy due
to quantization and differentiation. Further, the dynamic model
of the induction motor is only an approximate representation
of the real system. These sources of error result in an inconsis-
tent system of equations. To find a solution for such a system,
the least-squares criterion is used. Specifically, given y(nT') and
W(nT), where y(nT) = W (nT)K, one defines

]\T
EX(K) =Y y(nT) - W(nT)K|* (16)

as the residual error associated to a parameter vector K. Then,
the least-squares estimate K* is chosen such that E?(K) is
minimized for K = K*. The function E?(K) is quadratic
and therefore, has a unique minimum at the point where
OE%*(K)/OK = 0. Solving this expression for K* yields the
least-squares solution to y(nT) = W(nT)K as

[Z W (nT)y(nT)

n=1

K* = [g: W (nT)W (nT)

a7
When the system model is overparameterized (as in the appli-
cation here), the expression (17) will lead to an ill conditioned
solution for K*. That is, small changes in the data W(nT),
y(nT) lead to large changes in the value computed for K*. To
get around this problem, a nonlinear least-squares approach is
taken which involves minimizing

N
E*(K)=Y" [y(nT)-W (nT)K|*=R,—2R};, K+K" Ry K

n=1

(18)

subject to the constraints (13), where

Ry 2y (nT)y(nT)

n=1

Ry =Y W7 (nT)y(nT)

n=1

N
Rw 23" WT(nT)W(nT).
n=1
On physical grounds, the parameters K1, Ky are constrained
to the region

0< K| <00, 0<Ky<o0. (19)

Also, based on physical grounds, the squared error E2(K) will
be minimized in the interior of this region. Define the new error
function E72 (K1, K») as

N
E} (K1, K) 2 Z ly(nT) = W(nT)K|* K3=K2
n=1

K4=K Ky

Ry~ 2Rl K| s

Ky=K Ko

+ (KTRVVK)| Kg=K2

Ky =K Kg

(20)

As just explained, the minimum of (20) must occur in the inte-
rior of the region and therefore, at an extremum point. This then
entails solving the two extrema equations

A OEX(K:1, K>)

r1(K,) o =0 1)
OE2(K,, K
ro(K,) 2 7p(01(12 2) _ 0. (22)

The partial derivatives in (21) and (22) are rational functions in
the parameters K7, K. Defining

IE2(Ky, Ko)

p1(Ky, K») 2 Kir (K, Ky) = K} (23)
0K,
) _OE%(K1, K>)
po(K1, Ky) 2 Kro(Ky, K)) = Ky (24)
2

results in the p;( K1, K3) being polynomials in the parameters
K,, K, and having the same positive zero set (i.e., the same
roots satisfying K; > 0) as (21) and (22). The degrees of the
polynomials p; are given in the following table:

degK1 degK2
p1(K1, K>) 1 7
p2(K1, K>) 2 8

These two polynomials can be rewritten in the form

p1(K1, K2) = a1(K2) K1 + ao(K>) (25)
p2(K1, Ky) =bo(Ky) K2 + by (K2) K1 + bo(Ks). (26)
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A systematic procedure to find all possible solutions to a
set of polynomials is provided by the elimination theory
through the method of resultants [22] and [23]. (This method
was used in [4].) However, in this special case, p1 (K1, K2)
is of degree 1 in K; and can be solved directly. Substi-
tuting K; = —aO(K2)/a1(K2) from pl(Kl;KQ) = 0 into
p2(K1, K3) = 0 and multiplying the result through by a?(K>),
one obtains the (resultant) polynomial

r(Ky) = ag(K2)ba(Ky) — ag(Kz)ai (Ka)by (K>)

+a3 (K2)bo(K>)  (27)
where degy {r} = 20. The roots of (27) are the only
possible candidates for the values of K, that satisfy
pl(Kl,Kg) = pQ(Kl,Kg) = 0 for some Kl. In the on-
line implementation, the coefficients of the polynomials
al(Kg), ao(KQ), bg(Kg), bl(Kz), and bo(Kg) [WhOSG CXpliCit
expressions in terms of the elements of the matrices Ry and
Ry, are known a priori vis-a-vis (20), (23), and (24)] are
computed and stored during data collection. The coefficients
of the polynomial 7(K5) are then computed online according
to (27) by vector convolution, addition, and subtraction. The
positive roots Ko; of r(K2) = 0 are next computed and then
substituted into py (K7, K2;) = 0 and solved for its positive
roots K ;. By this method of back solving, all possible (finite
number) candidate solutions (K, K»;) are found, and the one
that gives the smallest squared error, i.e., the smallest value of
E2(K1, K»), is chosen.

A. Numerical Issues

After finding the solution that minimizes Ez(K 1, K3), one
needs to know if the solution makes sense. For example, in the
linear least-squares problem, there is a unique well defined so-
lution provided that the regressor matrix is nonsingular (i.e., the
matrix Ry in (18) assuming it is not overparameterized). In the
nonlinear case here, a Taylor series expansion about the com-
puted minimum point (K, K3) gives

EX(Ky1,K») = B2 (K7, K3) + Z (K;—K})
1:13 1
O?E? (K}, K3)
P 15522 *
——— (K, - K; 28
Son, UG 09
One then checks that the Hessian matrix
P*EX(K},K3)/0K;0K; is positive definite to en-

sure that the data is sufficiently rich to identify the parameters.

Further, in the linear least-squares problem (i.e., solving
Rw,y, = RwK with the model not overparameterized) one
checks that the condition number of the regressor matrix Ry
is small enough to ensure that the solution vector K is not
too sensitive to the data. In the nonlinear approach here, one
could check the sensitivity of roots of (27) to its coefficients.
That is, with r(K3) = o0, K3, for each i = 1,...,20
one perturbs the ith coefficient r;, — 7; + Ar and computes
0K, /0r; ~ (Ki — K3)/Ar (K3 is the root corresponding to
K3 with r; replaced by r; + Ar).

V. ERROR ESTIMATES

Naturally, it is desirable to have a meaningful way to evaluate
the confidence in the identification scheme. More specifically,
one would want to know how well W (n)K matches the data
y(n) and also how sensitive the residual error is with respect to
the parameters K;. To treat these issues, a residual error index
and a set of parametric error indices are defined. In judging the
performance of the algorithm presented in this brief, these mea-
sures are used.

Note that the measures of uncertainties developed hereafter
do not rely on typical statistical measures used in system iden-
tification [20]. Because of the nonlinearity of the model, the ef-
fect of measurement noise cannot be considered to be an addi-
tive term uncorrelated with the signals W (n) and y(n). In fact,
even if the system was linear, the assumption of independent
error statistics would be dubious because of modelling errors.
For this reason, there has been a considerable effort in the liter-
ature to address the problem under new assumptions (see [24],
[25], and the special issue [26]). The measures of uncertainties
derived hereafter are comparable to those of [24].

A. Residual Error Index

Equation (20) defines the residual error £ (K,,) at K where
a simple observation shows that 0 < E*(K) < R,. To develop
arelative measure of how well the data fits the model, define the
residual error index to be (see [10])

E? (K*)
Ey = 2> P/ 29
T R, (29)
which is zero if E*(K*) = 0, and 1 when K} = 0 (so

E 2(K *) = Ry). Therefore the residual error index E7r, ranges
from O tol, where E1 = 0indicates a perfect fit between model
and data. The residual error index F; is usually nonzero due
to noise, unmodeled dynamics and nonlinearities. In the worst
case, 1 = 1, which would mean that the residual error has a
magnitude comparable to that of the measurement y(n).

B. Parametric Error Indices

In addressing the issue of sensitivity of K to errors, we recall
that

)
P JK,=K;

0K

Therefore, it is not possible to use the derivative of the residual
error as a measure of how sensitive the error is with respect to
K. An alternative is to define 6 K as the variation in K such
that the increase of error is, for example, equal to 25% of the
residual error E7(K*) itself (see Fig. 1). Specifically, define a
parametric error index as the maximum value of 6 K; fori = 1,
2 such that

E? (K, +6K,) =

2557 (K}) (30)

where 6K, 2 [6K, 6K5)T.
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T
oK RW5K

1.25E2(K*)

R

| K*—6K K* K*+6K

Fig. 1. E2(K* 4 0K ) versus 6 K.

In words, for all 6K, that result in a 25% increase in the
residual error, find the maximum value of § K; for i = 1, 2. The
parametric error index ¢ K; indicates the amount by which K,
the 4th component of K, could vary without causing more than
a 25% increase in the residual error. A large parametric error
index indicates that the parameter estimate could vary greatly
without a large change in the residual error. Thus, the accuracy
of the parameter estimates would be in doubt. Likewise, a small
parametric error indicates that the residual error is very sensi-
tive to changes in the parameter estimates. In these cases, the
parameter estimates may be considered more accurate. In any
case, the error indices should not be considered as actual errors,
but rather as orders of magnitude of the errors to be expected,
to guide the identification process, and to warn about unreliable
results.

Obviously, the choice of a parametric error index as corre-
sponding to a 25% increase in the residual error is somewhat
subjective. A different level of residual error would lead to a
scaling of all the components of the parametric error index by
a common factor. An alternative would be to select a residual
error level corresponding to a known bound on the measure-
ment noise (thus, the algorithm of [24]). While such an assump-
tion leads to rigorous bounds on the parametric errors, the noise
bound itself would still be highly subjective as it would have to
account for modelling errors as well as measurement noise.

To compute the parametric error indices, for © = 1,2 one
maximizes 0 K; subject to (30). This is straightforwardly setup
as an unconstrained optimization using Lagrange multipliers by
maximizing

§Ki+ A (E? (K} + 6K,) — 1.25E% (K}))  (31)
over all possible § K| 2 [6K1 6K5]T and \. For example, with
7 = 1, the extrema are solutions to

9 (E? (K; + 6K,) — 1.25E% (K}))

1+ e =0 (32
0 (B2 (K; + 6K,) — 1.25E2 (K}))
A e =0 (33)

E? (K} +6K,) — 1.25E% (K)) =0. (34)
Equations (32)—(34) are rational functions in the three un-
knowns 0Ky, Ko, and A. Multiplying through by powers
0K; and 6 K>, they can be transformed into three polynomial
equations in the three unknowns of § K1, 6 Ko, and A\, where
elimination theory can then be used to solve this system [22],
[23], [27].

VI. EXPERIMENTAL RESULTS

A three phase, 230 V, 375 W (0.5 Hp), 1735 r/min (n, = 2
pole-pair) induction machine was used for the experiments. A
4096 pulse/rev optical encoder was attached to the motor for po-
sition measurements. The stator inductance is Ls = 0.2908 H
and the leakage factor is ¢ = 0.096. The motor was connected
to a 10-kHz PWM Allen—Bradley inverter (cat no. 1305) used as
a three-phase source. The real-time computing platform is from
Opal-RT which has an AMD Athlon 2000+ (1.66 GHz) pro-
cessor with 128 MB of RAM. The stator currents and voltages
along with the rotor position were sampled at 4 kHz. Filtered
differentiation (using digital filters) was used for calculating the
acceleration and the derivatives of the voltages and currents.
Specifically, the signals were filtered through a third-order low
pass (500-Hz cutoff) Butterworth filter followed by reconstruc-
tion of the derivatives using dz(t)/dt = («(t) — z(t — T))/T,
where 7' is the sampling period. As filtering and differentiation
are linear operations, their order of implementation does not
matter. As discussed in [28], if one differentiates once or more
the output of a low-pass Butterworth filter, the resulting signals
are equivalent to the state variables of a state-space implemen-
tation of the filter (as long as the order of the filter is higher
than the order of differentiation), which is equivalent to the im-
plementation used here. At each time ¢ = nT', the following is
done.

1) The A/Ds for the voltages and currents are sampled and
put through a 3-2 transformation to obtain ug,(nT),
ugp(nT), isa(nT), and igy(nT). The encoder measure-
ment (sample) §(nT’) is also read.

2) These voltage and current samples are rotated by the angle
npf using the sampled position measurement to obtain
s (NT), usy(nT), is,(nT), and ig,(nT).

3) The computed quantities us,(nT), usy(nT), ig.(nT),
isy(nT), along with 6(nT’) are each input to a low pass
filter and their respective differentiation filters.

4) The outputs of all the filters at t = NT (low pass and
differentiation) are then used to compute W (nT').

5) At each time step, Ry, Rw,, IR, are updated according
to Ru/((n — 1)T) + WT(TLT)W<7’LT) — Rw'(’rLT),
Rwy((n — 1)T) + WT(nT)y(nT) — Rw,(nT), and
Ry((n—1)T)+y*' (nT)y(nT) — R,(nT), respectively.

After the data collection period (1 s), the parameters are com-
puted as follows.

1) The coefficients of (23) and (24) are computed directly

from the components of Ry, Ry, R,.

2) The coefficients of the polynomial r(K3) are then com-
puted online according to (27) by vector convolution, ad-
dition, and subtraction.

3) The positive roots Ko; of 7(K3) = 0 are next computed,
then substituted into p; (K1, K2;) = 0 and solved for its
positive roots K ;. By this method of back solving, all pos-
sible (finite number) candidate solutions (K7;, Ko;) are
found.

4) The coefficients of E?(K1, K3) in (20) are then computed
directly from components of Ry, Ry, R,. The root pair
that gives the smallest squared error, i.e., the smallest value
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of Eg(Kl, K>), is chosen. The values of Tg, R are found
using (14).

The computation of the roots of the resultant polynomial (27)
was programmed in C and embedded in a S-function model in
Simulink. The Simulink file was converted into a real-time ex-
cutable file using RT-LAB from Opal-RT Technologies [29].
After collecting the data for 1 s, the S-function evaluated the
resultant polynomial, computed its roots, and then completed
the estimation algorithm to obtain T’z online (i.e., the param-
eter update is every second).

VII. EXPERIMENT SET 1

In the first experiment, a three-phase 60-Hz voltage was ap-
plied to the induction machine to bring it from zero speed up
to rated speed with no load. The voltages and currents were
put through a 3-2 transformation to obtain the two-phase equiv-
alent voltages ugs,,uspy plotted in Fig. 2. The sampled two-
phase equivalent current g, and its simulated response ¢s4_sim
are shown in Fig. 3 (the simulated response is explained in
Section VII-A). The phase b current ig; is similar, but shifted
by 7/(2n,). The calculated speed w (from the position mea-
surements) and the simulated speed wy;,, are shown in Fig. 4
(the simulated response is explained in Section VII-A).

In this case, the parameter values that resulted in the min-
imum least-squares error and their corresponding parametric
error indices are shown in the table at the bottom of the page.

Using (14), it follows that
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The Hessian matrix at the minimum point is [see (28)]

0.3105

{82E2(Kp)} B { 0.000411
OKOK; [ (i xsy 10000411

104.95

which is positive definite.

A. Simulation of the Experimental Motor

Another useful way to evaluate the identified parameters (35)
and (36) is to simulate the motor using these values and the mea-
sured voltages as input. The experimental voltages, shown in

Trp =0.12s (35) Fig. 2, were then used as input to a simulation of the model (1)
Rs =5.04 ). (36) using the parameter values from (35) and (36). The resulting
Parameter Estimated Value P E. Index with 1.25E? (K7)
K7 243.51 100.17
K3 8.06 2.21
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phase a current ¢g,_gj from the simulation is shown in Fig. 3
and corresponds well with the actual measured current zg,. Sim-
ilarly, the resulting speed wg;, from the simulation is shown in
Fig. 4, where the simulated speed is somewhat more oscillatory
than the measured speed w.

VIII. EXPERIMENT SET 2

In the second set of experiments the machine is run at constant
speed under full load. The experimental platform is the same as
in the first set of experiments. The induction machine was cou-
pled with a dc machine to provide the load. The electrical fre-
quency was chosen to be 30 Hz, and the rms stator current was
1.6 A (rated current at full load). There is sufficient informa-
tion in the signals to determine Tk and Rg, even if the speed
is constant; however, the sensitivity to noise is greater than in
the test with varying speed. Nevertheless, the experiment shows
that it is possible to track the rotor time constant in a situation
that does not provide sufficient information for the determina-
tion of all the parameters of the machine (cf. [4]).

The induction machine was run with full rated load for about
1 h, where the temperature of the case of the induction machine
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1200 1800 2400 _ 3000
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Fig. 7. T value averaged over previous 120 s.
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Fig. 8. Ry estimation recorded each second over 1 h.

changed from a room temperature of 22 to 44 °C as measured
with an infrared thermometer. The value of T was estimated
online each second and is plotted in Fig. 5. There is notice-
able oscillation in the estimated values of Tr when the update
is every second, but as expected, it is shown that the average
value decreases as the temperature increases. One can average
the estimated values of Tr shown in Fig. 5 over longer periods
of time to discern the tendency. For example, if the averaging
time interval is chosen to be 30 s, then the average over this time
interval is given by

TR_go(kT30) = % Z TR ([SO(kJ — 1) + TL] Tl)

for k = 1,2,3,..., with T3g = 307} and T} = 1 s. This is
plotted in Fig. 6.

Fig. 7 shows the calculated average value using 120 s for the
averaging interval. Note that the plot shows that the estimated
value of Ty begins with an average value of about 0.115 s when
the machine is turned on and settles out at 0.09 s after the ma-
chine is heated up. Further, note that the “cold” value of T,
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namely 0.115 s, is less than 5% different from the (cold) value
estimated when the motor was accelerating as given in (35). That
is, two different types of experiments result in less than a 5% dif-
ference in the value estimated for Tr.

Fig. 8 gives the estimated values of Rg computed each
second. Fig. 9 gives the result of averaging these values over
a 30 s time interval while Fig. 10 gives the result of averaging
these values over 120 s. Fig. 10 shows that the average value
increases from 5 to 5.8 {2 approximately. The estimate of Rg
is more sensitive to measurement noise because it appears
in the equations only as ug, — Rstse, usy — Rsisy and
Usq > Rslsq, Usy > Rslgy at constant speed under full
load (Ug, is the rms value of ug,, etc.). Note also that the
“cold” value of Rg, namely 5 €2, is essentially the same as the
(cold) value obtained when the motor was accelerating as given
in (36).

IX. CONCLUSION

In this brief, an online method for estimation of the rotor time
constant and the stator resistance of an induction machine was

presented. The problem was formulated as finding the parame-
ters that best fit the model of the induction motor to measured
output data of the motor in a least-squares sense. The method
guarantees the parameters are found in a finite number of steps.
Two different types of experiments were performed and their
results were consistent. Important advantages of the proposed
methodology include that it is an online method (so that the
value of T'r can be continuously updated) and that it can es-
timate 7'’z under constant or varying speed conditions.
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