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Abstract—In this work, a method is given to compute the
switching angles in a multilevel converter to produce the required
fundamental voltage while at the same time cancel out speci-
fied higher order harmonics. Specifically, a complete analysis
is given for a seven-level converter (three dc sources), where
it is shown that for a range of the modulation index , the
switching angles can be chosen to produce the desired funda-
mental 1 = ( 4 dc ) while making the fifth and seventh
harmonics identically zero.

Index Terms—Cascade inverter, harmonic elimination, multi-
level converter, resultants.

I. INTRODUCTION

A MULTILEVEL converter is a power electronic system
that synthesizes a desired voltage output from several

levels of dc voltages as inputs. In a distributed energy system
consisting of fuel cells, wind turbines, solar cells, etc., the mul-
tilevel converter can provide a mechanism to feed these sources
into an existing three phase power grid [21], [23]. Another area
of application interest is heavy duty hybrid-electric vehicles
(HEVs) such as tractor trailers, transfer trucks, or military
vehicles. Development of large electric drive trains for these
vehicles will result in increased fuel efficiency, lower emis-
sions, and likely better vehicle performance (acceleration and
braking). For parallel-configured HEVs, a cascaded H-bridges
multilevel inverter can be used to drive the traction motor from
a set of batteries, ultracapacitors, or fuel cells.

Multilevel inverters also have several advantages with
respect to hard-switched two-level pulse width modulation
(PWM) adjustable-speed drives (ASDs). Motor damage and
failure have been reported by industry as a result of some
ASD inverters’ high-voltage change rates , which
produced a common-mode voltage across the motor windings.
High-frequency switching can exacerbate the problem because
of the numerous times this common mode voltage is impressed
upon the motor each cycle. The main problems reported have
been “motor bearing failure” and “motor winding insulation
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breakdown” because of circulating currents, dielectric stresses,
voltage surge, and corona discharge [1], [2], [7].

Multilevel inverters overcome these problems because their
individual devices have a much lower per switching, and
they operate at high efficiencies because they can switch at a
much lower frequency than PWM-controlled inverters. Three-,
four-, and five-level rectifier-inverter drive systems that have
used some form of multilevel PWM as a means to control the
switching of the rectifier and inverter sections have been in-
vestigated in the literature [10], [12], [15], [16], [25]. Multi-
level PWM has lower than that experienced in some
two-level PWM drives because switching is between several
smaller voltage levels. However, switching losses and voltage
total harmonic distortion (THD) are still relatively high for some
of these proposed schemes.

In this work, a method is given to compute the switching
angles in a multilevel converter so as to produce the required
fundamental voltage while at the same time cancel out speci-
fied higher order harmonics. In particular, a complete analysis
is given for a seven-level converter (three dc sources) where
it is shown that for a range of the modulation index , the
switching angles can be chosen to produce the desired funda-
mental while making the fifth and sev-
enth harmonics identically zero. In contrast to previous work in
which iterative numerical techniques were employed [14], [19],
[20], the approach here gives theexactrange of the modulation
index for which solutions exist and givesall possible solutions.
A preliminary version of this paper appeared in [3].

II. CASCADED H-BRIDGES

The cascade multilevel inverter consists of a series of
H-bridge (single-phase full-bridge) inverter units. The general
function of this multilevel inverter is to synthesize a desired
voltage from several separate dc sources (SDCSs), which may
be obtained from batteries, fuel cells, or ultracapacitors in an
HEV. Fig. 1 shows a single-phase structure of a cascade inverter
with SDCSs [11]. Each SDCS is connected to a single-phase
full-bridge inverter. Each inverter level can generate three
different voltage outputs ( , zero, and ) by connecting
the dc source to the ac output side by different combinations
of the four switches: , , , and . The ac output of each
level’s full-bridge inverter is connected in series such that the
synthesized voltage waveform is the sum of all of the individual
inverter outputs. The number of output phase voltage levels in
a cascade mulitilevel inverter is then , where is the
number of dc sources. An example phase voltage waveform
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Fig. 1. Single-phase structure of a multilevel cascaded H-bridges inverter.

for an 11-level cascaded multilevel inverter with five SDSCs
and five full bridges is shown in Fig. 2. The output

phase voltage is given by .
With enough levels and anappropriateswitching algorithm,

the multilevel inverter results in an output voltage that is almost
sinusoidal. For the 11-level example shown in Fig. 2, the wave-
form has less than 5% THD with each of the active devices of the
H-bridges active devices switching only at the fundamental fre-
quency. Each H-bridge unit generates a quasisquare waveform
by phase-shifting its positive and negative phase legs’ switching
timings. Each switching device always conducts for 180(or
1/2 cycle) regardless of the pulse width of the quasisquare wave
so that this switching method results in equalizing the current
stress in each active device.

III. SWITCHING ALGORITHM FOR THE

MULTILEVEL CONVERTER

The Fourier series expansion of the (stepped) output voltage
waveform of the multilevel inverter as shown in Fig. 2 is [18],
[20], [22]

(1)

where is the number of dc sources. Ideally, given a desired
fundamental voltage , one wants to determine the switching
angles so that (1) becomes .
In practice, one is left with trying to do this approximately.
Two predominate methods in choosing the switching angles

are 1) eliminate the lower frequency dominant
harmonics or 2) minimize the total harmonic distortion. The
more popular and straightforward of the two techniques is the
first, that is, eliminate the lower dominant harmonics and filter
the output to remove the higher residual frequencies. Here, the
choice is also to eliminate the lower frequency harmonics.

Fig. 2. Output waveform of an 11-level cascade multilevel inverter.

The goal here is to choose the switching angles
to make the first harmonic equal

to the desired fundamental voltage and specific higher har-
monics of equal to zero. As the application of interest
here is a three-phase motor drive, the triplen harmonics in each
phase need not be canceled as they automatically cancel in the
line-to-line voltages. Specifically, in case of dc sources,
the desire is to cancel the fifth-, seventh-, 11th-, and 13th-order
harmonics as they dominate the total harmonic distortion. The
mathematical statement of these conditions is then

(2)

This is a system of five transcendental equations in the five un-
knowns and . One approach to solving this set
of nonlinear transcendental (2) is to use an iterative method such
as the Newton-Raphson method [6], [18], [20], [22]. The correct
solution to the conditions (2) would mean that the output voltage
of the 11-level inverter would not contain the fifth-, seventh-,
11th-, and 13th-order harmonic components.

The fundamental question is “When does the set of (2) have
a solution?” As will be shown below, it turns out that a solution
exists for only specific ranges of the modulation index1

. This range does not include the low end or the
high end of the modulation index. A method is now presented
to find the solutions when they exist. This method is based on
the theory of resultants of polynomials [9]. To proceed, let

1Each inverter has a dc source ofV so that the maximum output voltage of
the multilevel inverter issV . A square wave of amplitudesV results in the
maximum fundamental output possible ofV = 4sV =�. The modulation
index is, therefore,m V =V = V = (s4V =�) :
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, and define for . Then, using the
trigonometric identities

the conditions (2) become

(3)

where , and . This is
a set of five equations in the five unknowns .
Further, the solutions must satisfy
. This development has resulted in a set of polynomial equa-

tions rather than trigonometric equations. Though the degree is
high, there is a well-known theory to solve sets of polynomial
equations, which is described in Section III-A.

A. Resultants

Given two polynomials and , how does
one find their common zeros? That is, the values such
that

Consider and as polynomials in whose
coefficients are polynomials in . For example, let
and have degrees 3 and 2, respectively, inso that
they may be written in the form

A consequence of the famedNullstellensatztheorem of Hilbert
[4], [5], [8] is that the polynomials and do

not have a common zero if and only if there exists another pair
of polynomials

such that

( and
).

More generally, there is always a polynomial (called
the resultant polynomial) such that

So if , then , that is, if
is a common zero of the pair ,

then the first coordinate is a zero of . The roots of
are easy to find (numerically) as it is a polynomial in one

variable. To find the common zeros of ,
one computes the roots of Next, for
each such one (numerically) computes the roots of

(4)

and the roots of

(5)

Any root that is in the solution set of both (4) and (5) for
a given results in the pair being a common zero
of and . Thus, this gives a method of solving
polynomials in one variable to compute the common zeros of

.
To see how one obtains , let

Next, see if polynomials of the form

can be found such that

(6)

Equating powers of , this equation may be rewritten in matrix
form as
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The matrix on the left-hand side is called theSylvestermatrix
and is denoted here by . The inverse of has the
form

where is the adjoint matrix and is a 5 5 poly-
nomialmatrix in . Solving for , gives

Choosing this becomes

and guarantees that , , , , are
polynomials in . That is, theresultant polynomialdefined by

is the polynomial required for (6).
In short, the polynomials have a

common zero at only if .
For an arbitrary pair of polynomials of degrees

, in respectively, the matrix is of dimension
(see [4], [5], and [8]).

Remark: It was pointed out that if
, then as a

simple consequence of (6). Does
imply that there exists such that

The answer is yes if either of the leading coefficients inof
, are not zero at , i.e., or

(See [4], [5], and [8] for a detailed explanation).
Procedure to compute the common zeros:

1) Compute the roots ,
of

2) Substitute these roots into .
3) For solve to get the roots

for .
4) The common zeros of are then

those values of that satisfy .

B. Seven-Level Case

To illustrate the procedure of using the theory of resultants
to solve the system (3), consider the seven-level case (three dc
sources). The conditions are

(7)

Substitute into to get

The goal here is to find solutions of

For each fixed , can be viewed as a polynomial of
(at most) degree 5 in whose coefficients are polynomials of
(at most) degree 5 in . For example2

This is often written as to emphasize
that is being viewed as a polynomial in whose coefficients
are in the ring of polynomials Similarly,

is a polynomial in whose coefficients are polyno-
mials in .

For each fixed , the pair of polynomials ,
has a solution if and only if the cor-

responding resultant matrix is singular. Here,
and so that the

2In this case, it turns out that the coefficient of thex is zero so that
p (x ; x ) has degree 4 inx :
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resultant matrix is an element of , that
is, it is a 10 10 matrix whose elements are polynomials in

. The determinant of this matrix is a
polynomial in . For any which is a simultaneous
solution of , , it must follow
that . Consequently, finding the roots gives
candidate solutions for to check for common zeros of

.
In more detail, the resultant polynomial of the pair

was found using the software package
MATHEMATICA with the command [24]. The
polynomial turned out to be a 22nd-order polynomial
given by

where is a ninth-order polynomial as given in the
Appendix. Note that is a zero of However

and, as these two polynomials have a common zero only for
, only the roots of need be checked.

The algorithm is as follows.
Algorithm for the Seven-Level Case

1) Given , find the roots of
2) Discard any roots that are less than zero, greater than one,

or that are complex. Denote the remaining roots as
3) For each fixed zero in the set substitute it into

and solve for the roots of
4) Discard any roots (in ) that are complex, less than zero

or greater than one. Denote the pairs of remaining roots
as .

5) Compute and discard any pair
that makes this quantity negative or greater than one. De-
note the triples of remaining roots as .

6) Discard any triple for which does not
hold. Denote the remaining triples as
The switching angles that are a solution to the three level
system (7) are

1) Minimization of the Fifth and Seventh Harmonic Compo-
nents: For those values of for which ,
do not have common zeros satisfying , ,
the next best thing is to minimize the error

This was accomplished by simply computing the values of
for , with ,

and then choosing the minimum value.
2) Results for the Seven-Level Inverter:The results are sum-

marized in Fig. 3 which shows the switching angles, ,
and versus for those values of in which the system
(7) has a solution. The parameterwas incremented in steps

Fig. 3. Switching angles� , � , � in degrees versusm.

Fig. 4. Angles that give zero third and fifth harmonics and the smallest 11th
and 13th harmonics.

of 0.01. Note that for in the range from approximately 1.49
to 1.85, there are two different sets of solutions that solve (7).
On the other hand, for , , and

, there areno solutions to (7). Interestingly,
for , and there are (isolated)
solutions.

In the range for which there are two sets of
solutions, the solution which gives the smallest distortion due to
the 11th and 13th harmonics is a good choice. This set of angles
is given in Fig. 4.

As pointed out above, for , ,
, and , there are no solutions

satisfying the conditions (7). Consequently, for these ranges
of , the switching angles were determined by minimizing

. Fig. 5 shows a plot of the resulting

mimimum error versus for these
values of .

As Fig. 5 shows, when and , the error
is zero corresponding to the isolated solutions to (7) for those
values of . For and , the error goes
to zero because these values correspond to the boundary of the
exact solutions of (6). However, note, e.g., when , the
error is about 0.25, that is, the error is the same size as. Other
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Fig. 5. Error= (p =5) + (p =7) versusm.

Fig. 6. Gate driver boards and MOSFETs for the mulitlevel inverter.

than close to the endpoints of the two intervals ,

the minimum error is too large to make
the corresponding switching angles for this interval of any use.
Consequently, for in this interval, one must use some other
approach (e.g., PWM) in order to get reduced harmonics. For the
other two intervals , , the minimum error

is around 5% or less so that it might be
satisfactory to use the corresponding switching angles for these
intervals.

IV. EXPERIMENTAL WORK

A prototype three-phase 11-level wye-connected cascaded
inverter has been built using 100 V, 70 A MOSFETs as the
switching devices [1]. The gate driver boards and MOSFETs
are shown in Fig. 6. A battery bank of 15 SDCSs of 48 Vs
dc (not shown) each feed the inverter (five SDCSs per phase).
In the experimental study here, this prototype system was con-
figured to be a seven-level (three SDCSs per phase) converter
with each level being 12 V.The ribbon cable shown in the figure
provides the communication link between the gate driver board
and the real-time processor. In this work, the RT-LAB real-time
computing platform fromOpal-RT-Technologies Inc.[13] was
used to interface the computer (which generates the logic sig-
nals) to this cable. The RT-LAB system allows one to write the

Fig. 7. Phase voltage whenm = 0:5.

Fig. 8. Normalized FFTa =a versus frequency form = 0:5.

switching algorithm in SIMULINK which is then converted to
C code using RTW (real-time workshop) fromMathworks. The
RT-LAB software provides icons to interface the SIMULINK
model to the digital I/O board and converts theC code into exe-
cutables. The time resolution (the precision for the time at which
a switch is turned on or off) was chosen to be 1/1000 of an elec-
trical cycle. For the 60-Hz frequency results reported here, this
comes to s. Using the XHP (extra high
performance) option in RT-LAB as well as the multiprocessor
option to spread the computation between two processors, an
execution time of 16 s was achieved.

Note that while the computation of the lookup table of Figs. 3
and 4 require some offline computational effort, the real-time
implementation is accomplished by putting the data (i.e., Figs. 3
and 4) in a lookup table and therefore does not require high
computational power for implementation.

Experiments were performed to validate the theoretical
results of Section III-B2. That is, the elimination of the fifth
and seventh harmonics (at 300 and 420 Hz, respectively) in
the three phase output of a mutlilevel inverter. Recall, from
Section III, that the triplen harmonics (180, 360, 540, etc.) in
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Fig. 9. Phase voltage whenm = 1.

Fig. 10. Normalized FFTa =a versus frequency form = 1.

each phase need not be canceled as they automatically cancel
in the line-to-line voltages. Experimental data was taken for the
parameter having the values , 1.0, 1.5, 2.0, and 2.5.
In this set of data, the angles were chosen according to Fig. 4.
The frequency was set to 60 Hz in each case, and the program
was run in real time with a 16-s sample period, i.e., the logic
signals were updated to the gate driver board every 16s.

The voltage was measured using a high-speed data acqui-
sition oscilloscope every s, resulting in the data

where
samples corresponding to three periods of the 60-Hz

waveform. A fast Fourier transform was performed on this
voltage data to get where the fre-
quency increment is rad/s
or 20 Hz. The number is simply the Fourier coef-
ficient of the th harmonic (whose frequency is with

) in the Fourier series expansion of
the phase voltage signal . With and

the data that is plotted is the normal-

ized magnitude .

Fig. 11. Phase voltage whenm = 1:5.

Fig. 12. Normalized FFTa =a versus frequency form = 1:5.

Fig. 7 is the plot of the phase voltage for , and the
corresponding FFT of this signal is given in Fig. 8. Fig. 8 shows
a 0.225 normalized magnitude of the fifth harmonic and a 0.15
normalized magnitude of the seventh harmonic for a total nor-

malized distortion of due to these
two harmonics. Fig. 5 shows an error of about 0.125 at
for a normalized magnitude of because of
these two harmonics, which is in close agreement. At this low
value for , only one SDCS of the converter is used to achieve
the fundamental amplitude, and nothing can be done to elimi-
nate any harmonics without additional switching.

Fig. 9 is the plot of the phase voltage for . The corre-
sponding FFT of this signal is given in Fig. 10. Fig. 10 shows
a 0.07 normalized magnitude of the fifth harmonic and a 0.05
normalized magnitude of the seventh harmonic for a total nor-

malized distortion of due to these
two harmonics. Fig. 5 predicts an error of about 0.07 at
for a normalized magnitude of due to these two
harmonics which again is in close agreement.
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Fig. 13. Phase voltage whenm = 2.

Fig. 14. Normalized FFTa =a versus frequency form = 2.

Fig. 11 is the plot of the phase voltage for . The
corresponding FFT of this signal is given in Fig. 12. Fig. 12
shows essentially zero for the normalized magnitude of the fifth
harmonic and about 0.01 normalized magnitude of the seventh
harmonic for a total normalized distortion of 0.01 due to these
two harmonics which corresponds well with the predicted error
of zero in Fig. 5. Note that there are still large triplen harmonics
in the phase voltage, but these cancel in the line-line voltage.

Fig. 13 is the plot of the phase voltage for . The cor-
responding FFT of this signal is given in Fig. 14. Fig. 14 shows
the fifth and seventh harmonics are zero as predicted in Fig. 5.

Fig. 15 is the plot of the phase voltage for , and its
corresponding FFT is given in Fig. 16. Fig. 16 shows the fifth
and seventh harmonics are zero as predicted in Fig. 5.

For , there are two possible set of solutions which
generate zero fifth and seventh harmonics (See Figs. 3 and 4).
To compare the two sets of switching angles, Fig. 17 shows the
FFT of the data where the fifth and seventh harmonics are zero,
and the normalized 11th and 13th harmonics (at 660 Hz and

Fig. 15. Phase voltage whenm = 2:5.

Fig. 16. Normalized FFTa =a versus frequency form = 2:5.

Fig. 17. Normalized FFTa =a versus frequency form = 1:82 and� ,
� , and� chosen to give smallest distortion due to the 11th and 13th harmonics.
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Fig. 18. Normalized FFTa =a versus frequency form = 1:82 and� ,
� , and� chosen to which give a larger distortion generated by the 11th and
13th harmonics.

780 Hz, respectively) are both 0.04 when the switching angles
are chosen according to Fig. 4.

In contrast, Fig. 18 is an FFT of the data in
which the other set of switching angles is chosen. In this case,
Fig. 17 shows the fifth and seventh harmonics are zero, but the
normalized 11th and 13th harmonics are about 0.06 and 0.04,
respectively.

V. CONCLUSION AND FURTHER WORK

A full solution to the problem of eliminating the fifth and
seventh harmonics in a seven level multilevel inverter has
been given. Specifically, resultant theory was used to com-
pletely characterize for each when a solution existed and
when it did not (in contrast to numerical techniques such as
Newton-Raphson). Futher, it was shown that for a range of
values of , there were two sets of solutions and these values
were also completely characterized. For each value of,
the solution set that minimized the 11th and 13th harmonics
was chosen. Experimental results were also presented and
corresponded well to the theoretically predicted results. In
[17], the authors have extended this work to the case studied
by Cunnyngham [6] where the separate dc sources do not all
provide equal voltages .

APPENDIX

RESULTANT POLYNOMIAL
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