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Abstract—in this work, a method is given to compute the breakdown” because of circulating currents, dielectric stresses,
switching angles in a multilevel converter to produce the required  yoltage surge, and corona discharge [1], [2], [7].
fundamental voltage while at the same time cancel out speci- v iilevel inverters overcome these problems because their
fied higher order harmonics. Specifically, a complete analysis . . . . -
is given for a seven-level converter (three dc sources), where'nd“"du"’lI dewce;havegrnuch lowey’/dt per switching, gnd
it is shown that for a range of the modulation index my, the they operate at high efficiencies because they can switch at a
switching angles can be chosen to produce the desired funda-much lower frequency than PWM-controlled inverters. Three-,
mental Vi = m;(s4Vac/7) while making the fifth and seventh  four-, and five-level rectifier-inverter drive systems that have
harmonics identically zero. used some form of multilevel PWM as a means to control the
Index Terms—Cascade inverter, harmonic elimination, multi- switching of the rectifier and inverter sections have been in-
level converter, resultants. vestigated in the literature [10], [12], [15], [16], [25]. Multi-
level PWM has lowerdV/dt than that experienced in some
I. INTRODUCTION two-level PWM drives because switching is between several

] . smaller voltage levels. However, switching losses and voltage
A MULTILEVEL converter is a power electronic systeMygia| harmonic distortion (THD) are still relatively high for some

that synthesizes a desired voltage output from seveglihese proposed schemes.
Ievel_s qf dc voltages as i_nputs. I_n a distributed energy systemp, this work, a method is given to compute the switching
consisting of fuel cells, wind turbines, solar cells, etc., the Mulngles in a multilevel converter so as to produce the required
tilevel converter can provide a mechanism to feed these sourggsgamental voltage while at the same time cancel out speci-
into an existing three phase power grid [21], [23]. Another arggy higher order harmonics. In particular, a complete analysis
of application interest is heavy duty hybrid-electric vehicleg given for a seven-level converter (three dc sources) where
(HEVs) such as tractor trailers, transfer trucks, or military is shown that for a range of the modulation index, the
vehicles. Development of large electric drive trains for the%‘%vitching angles can be chosen to produce the desired funda-
vehicles will result in increased fuel efficiency, lower emismentalVl = ma(s4Va./m) while making the fifth and sev-
sions, and likely better vehicle performance (acceleration agfth harmonics identically zero. In contrast to previous work in
braking). For parallel-configured HEVs, a cascaded H-bridggich iterative numerical techniques were employed [14], [19],
multilevel inverter can be used to drive the traction motor fror[rzo], the approach here gives thgactrange of the modulation
a set of batteries, ultracapacitors, or fuel cells. index for which solutions exist and giva#i possible solutions.

Multilevel inverters also have several advantages Wik preliminary version of this paper appeared in [3].
respect to hard-switched two-level pulse width modulation

(PWM) adjustable-speed drives (ASDs). Motor damage and
failure have been reported by industry as a result of some
ASD inverters’ high-voltage change ratégV/dt), which The cascade multilevel inverter consists of a series of
produced a common-mode voltage across the motor windingsbridge (single-phase full-bridge) inverter units. The general
High-frequency switching can exacerbate the problem becadigaction of this multilevel inverter is to synthesize a desired
of the numerous times this common mode voltage is impressgsitage from several separate dc sources (SDCSs), which may
upon the motor each cycle. The main problems reported hadye obtained from batteries, fuel cells, or ultracapacitors in an
been “motor bearing failure” and “motor winding insulatiorHEV. Fig. 1 shows a single-phase structure of a cascade inverter
with SDCSs [11]. Each SDCS is connected to a single-phase

, _ _ _ o full-bridge inverter. Each inverter level can generate three
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Fig. 1. Single-phase structure of a multilevel cascaded H-bridges inverter.Fig. 2. Output waveform of an 11-level cascade multilevel inverter.

for an 11-level cascaded multilevel inverter with five SDSCs The goal here is to choose the switching angles 6, <
(s = 5) and five full bridges is shown in Fig. 2. The outpu, < ... < 4, < 7/2 to make the first harmonic equal
phase voltage is given by,, = v41 + Va2 + Va3 + Vas + ve5.  to the desired fundamental volta§ie and specific higher har-
With enough levels and appropriateswitching algorithm, monics of V(wt) equal to zero. As the application of interest
the multilevel inverter results in an output voltage that is almokere is a three-phase motor drive, the triplen harmonics in each
sinusoidal. For the 11-level example shown in Fig. 2, the wavghase need not be canceled as they automatically cancel in the
form has less than 5% THD with each of the active devices of thge-to-line voltages. Specifically, in case of= 5 dc sources,
H-bridges active devices switching only at the fundamental frghe desire is to cancel the fifth-, seventh-, 11th-, and 13th-order
quency. Each H-bridge unit generates a quasisquare wavef¢raimonics as they dominate the total harmonic distortion. The
by phase-shifting its positive and negative phase legs’ switchingathematical statement of these conditions is then
timings. Each switching device always conducts for °188r

1/2 cycle) regardless of the pulse width of the quasisquare wave 4Vac (cos(61) + cos(2) + - - - + cos(fs)) =V;
so that this switching method results in equalizing the current m _ . _
stress in each active device. cos(561) + cos(50z) + - - - + cos(565) =0
cos(761) + cos(7602) + - - - + cos(765) =0
[1l. SWITCHING ALGORITHM FOR THE cos(1161) + cos(116) + - - - + cos(1165) =0
MULTILEVEL CONVERTER cos(1301) + cos(1362) + - - - + cos(1365) =0. 2

The Fourier series expansion of the (stepped) output voltage
waveform of the multilevel inverter as shown in Fig. 2 is [18]This is a system of five transcendental equations in the five un-
[20], [22] knowns#,, 65,053,604, andfs. One approach to solving this set
of nonlinear transcendental (2) is to use an iterative method such
. 4V, as the Newton-Raphson method [6], [18], [20], [22]. The correct
V(wt) = Z e (cos(nbh) + cos(nba) + --- solution to the conditions (2) would mean that the output voltage
n=135,... _ of the 11-level inverter would not contain the fifth-, seventh-,
+ cos(nby)) sin(nwt) (1) 11th-, and 13th-order harmonic components.

. ) . The fundamental question is “When does the set of (2) have
wheres is the number of dc sources. Ideally, given a desireds |, tion?” As will be shown below, it turns out that a solution
fundamental voltagé:, one wants to determine the switching,yists for only specific ranges of the modulation index, 2
anglesty, ..., 0, so that (1) become¥’(wt) = Visin(wt). V1 / (s4Vy. /7). This range does not include the low end or the
In practice, one is left with trying to do this approximatelyhigh end of the modulation index. A method is now presented
Two predominate methods in choosing the switching anglg$ing the solutions when they exist. This method is based on

f1,...05 are 1) eliminate the lower frequency dominang,e theory of resultants of polynomials [9]. To proceed slet

harmonics or 2) minimize the total harmonic distortion. The

more popular and straightforward of the two techniques is the

first, that is, eliminate the lower dominant harmonics and filtey ‘Each inverter has a dc sourceidf. so that the maximum output voltage of
! ' . . . ‘ée multilevel inverter is$ V... A square wave of amplitudé/,. results in the

the output to remove the higher residual frequencies. Here, imum fundamental output possibleWaf,.. = 4sVa. /7. The modulation

choice is also to eliminate the lower frequency harmonics. index s, thereforem; £ Vi /Vimax = Vi/ (s4Vae /7).
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5, and definer; = cos(6;) for: = 1,...,5. Then, using the nothave a common zero if and only if there exists another pair

trigonometric identities

cos(56) =5cos() — 20 cos®(8) + 16 cos”(0)
cos(76) = — 7cos(f) + 56 cos®(8) — 112 cos®(6)
+ 64cos’(0)
= — 11 cos(#) + 220 cos®(#) — 1232 cos” (6)
+ 2816 cos’ (A) — 2816 cos®(6)
+ 1024 cos* (9)
cos(130) =13 cos(#) — 364 cos®(#) + 2912 cos® ()
— 9984 cos” () + 16 640 cos®(6)
— 13312cos'*(#) 4 4096 cos'3(6)

cos(116)

the conditions (2) become
p1(x) Eri+tro4+ a3 tTat+as—m=0

5x; — 2027 + 1627) = 0
211227 +642]) = 0

5
pu(x) £ (—11z; + 2200 — 123247
+28162, — 281627 + 1024z}") =0
5
pis(z) £ (13, — 364z + 291227 — 9984z

+ 16 640z — 133122}
+40962;°) =0

of polynomials

a(x1,z9) =a1(z1)x2 + o)
Bw1,22) =Pa(x1)x5 + B1(21)2 + Po(r1)

such that
oz, w2)a(ry, T2) + B(21, 2)b(21, 22) = 1.

(degyofa(z1, z2)t =deg, o {b(z1, 22)} — 1 anddeg,, {B(z1, z2)}
=deg, ,{a(z1,z2)} —1).

More generally, there is always a polynomidls,) (called
theresultant polynomia) such that

a(z1, w2)a(w1, x2) + f(w1, 22)b(21, 22) = r(w1).

So ifa(:vlo,l’g(]) = b(.’lilo,xQO) =0, thenr(a:m) = 0, thatis, if
(210, x20) is @ common zero of the pafi(x1, z2), b(z1,22)},
then the first coordinate; is a zero ofr(x;) = 0. The roots of
r(z) are easy to find (numerically) as it is a polynomial in one
variable. To find the common zeros §fi(x1, z2), b(z1,22)},
one computes the; rootszy; i = 1,...,ny of r(zy). Next, for
each suchxy;, one (numerically) computes the roots of

0,(11711',3?2) =0 (4)
and the roots of
b(d?l,;,wg) =0. (5)

Any root z,; that is in the solution set of both (4) and (5) for
a givenzy; results in the paifz1;, z2;) being a common zero

of a(x1,x9) andb(z1, z2). Thus, this gives a method of solving
polynomials in one variable to compute the common zeros of

wherer = (21, z2, 23, 24, 25), andm 2 Vi/ (4Vy. /7). Thisis {a(z1,22),b(x1, 22)}- ]
a set of five equations in the five unknowmﬁ, To, T3, Ta, Ts. To see how one obtaingz: ), let
Further, the solutions must satigiy< z5 < --- < 25 < 21 < a(z1, 22) :a3(x1)x§ n ag(xl)xg + a1 (z1)@s + ao(@1)
1. This development has resulted in a set of polynomial equa- ' 5
tions rather than trigonometric equations. Though the degree (21, w2) =b2(21)23 + b1 (z1)22 + bo(21).
high, there is a well-known theory to solve sets of polynomlq\llext see if polynomials of the form
equations, which is described in Section IlI-A.
a(r1,2) =a1(z1)2 + ap(z1)

B(x1,22) :ﬂ2($1)1’§ + Bi(z1)z2 + Po(z1)
Given two polynomialsi(z1,x2) andb(xy,z2), how does
one find their common zeros? Thatis, the val(igs, 2o0) such  ¢a@n be found such that

that a(x1,z2)a(z1, x2) + B(x1,22)b(21, 22) = r(z1).  (6)

A. Resultants

a(10,%20) = b(z10,720) = 0. Equating powers af s, this equation may be rewritten in matrix

) L form as
Considera(x1,z2) andb(zy,z2) as polynomials in:; whose

coefficients are polynomials in;. For example, leti(z1,z5) [@o(z1) 0 bo(z1) 0 07 [ao(z1)
andb(z,x») have degrees 3 and 2, respectivelyzinso that | a1(z1) ao(z1) bi(z1) bo(z1) 0 | |ai(z1)
they may be written in the form az(z1) ai(z1) ba(z1) bi(z1) bo | | Bolz1)
5 ) az(z1) az(z1) 0 ba(w1) b1 | | Bu(z1)
a(r1, ) =az(w1)zy + az(z1)ws + a1(z1)z2 0  as(z1) O 0 byl LBa(a1)

+ ao(71) r(1)

b(il,'l,wg) :bg(xl)d?% + 61(1}1)3?2 + bo(il,'l).

A consequence of the fam&tlllstellensatzheorem of Hilbert
[4], [5], [8] is that the polynomials(xzy, z2) andb(xy, z2) do

Il
cocoocor
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The matrix on the left-hand side is called t8glvestematrix

and is denoted here I8, ;(x1). The inverse oF, ;(z1) has the
form

1

-1 o
San(@1) = 4ot Sus(a1)

adj (Sap(x1))

whereadj (S, (1)) is the adjoint matrix and is a %5 poly-
nomialmatrix inzy. Solving fora;(z1), B;(z1) gives

aOExlg r(gl)
ay il adjSqp(21)

g(l]gatig ~ det Sqp(71) 8
Ba(z1) ’

= adjSa,b(zl)

OO oo

and guarantees thay(x1), a1(z1), Bo(z1), f1(x1), B2(z1) are
polynomials inz,. That is, theresultant polynomiatiefined by
r(z1) = det S, (1) is the polynomial required for (6).

In short, the polynomials{a(z1,x2),b(z1,22)} have a
common zero 6(1'110,:1}20) only if 7‘(.1710) 2 det Sa,},(l’lo) =0.
For an arbitrary pair of polynomial§a(z),b(z)} of degrees
ng, Ny IN x respectively, the matrixS,; is of dimension
(nq +np) X (ng + np) (see [4], [5], and [8]).

Remark: It was pointed out that ifa(z10,220)
b(.]?l(),il,'zo) = 0, then 7‘(.1710) 2 det Sa,},(xlo) = 0as a
simple consequence of (6). Dog&r1g) = det S, 4(710) = 0
imply that there exists,, such that

a<$107.’1]'20) = b(x107$20> =07

The answer is yes if either of the leading coefficients:inof

a(x1,x2), b(x1,22) are not zero akqg, i.e., az(x19) # 0 oOr

ba(z10) # 0 (See [4], [5], and [8] for a detailed explanation).
Procedure to compute the common zeros:

1) Compute the rootszix, & = 1,...,n, =
deg, {ri(z1)} of r(z1) = 0.

2) Substitute these roots intdz1, z2).

3) Fork =1,...,n,, solvea(x1x,x2) = 0 to get the roots
Tope fOrd =1,... ,nq = deg, {a(z1x,22)}.

4) The common zeros ofa(z1,x2),b(x1,22)} are then
those values (ﬁl’lkﬂEQk[) that SatiSf)l)(.’ll'lk7.’ll'2k[> =0.
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B. Seven-Level Case

To illustrate the procedure of using the theory of resultants
to solve the system (3), consider the seven-level case (three dc

sources). The conditions are

pl(x)é$1+d72+d73—m:0

4V,
mévl/ de _ $Mg
™

3

ps(z) 23 (5zi — 202 4+ 1627) =0
i=1

3

pr(z) £ (=Tw; + 5627 — 11227 + 642]) = 0. (7)

=1

Substituters = m — (21 + x2) into ps, p7 to get
ps(x1, 12) =51 — 2053 + 1623 + 5z9 — 2022 + 1655
+5(m — x1 — x3) — 20(m — 21 — 13)>
+16(m — z1 — x2)5
pr(z1, 20) = — Ty + 5623 — 11225 + 64z] — Ty
+ 5625 — 11225 + 64x5 — T(m — 1 — x5)
+56(m — 1 — )% — 112(m — 1 — 32)°
+64(m — 1 — x2)7.
The goal here is to find solutions of

ps(r1,22) =0
pr(z1,72) =0.
For each fixedry, p5(x1,z2) can be viewed as a polynomial of
(at most) degree 5 im, whose coefficients are polynomials of
(at most) degree 5 im;. For examplg
ps(x1,29) =bm — 20m3 + 16m° + 60m2z; — 80m*z,

— 60ma? 4+ 160m>z? — 160m22?

+ 80ma]

+ [60m? — 80m* — 120maz; + 320m°z;

+60z7 — 480m°27 + 320ma’ — 80z7]
X To
+ [-60m + 160m® + 602
—480m*zq + 480ma7 — 16027] 3

+ [-160m® + 320ma; — 160z7] 3

+ [80m — 80z1]z5.
This is often written a®s(z1,22) € R[z1](z2) to emphasize
thatps is being viewed as a polynomial i, whose coefficients
are in the ring of polynomial&[z1]. Similarly, p7(z1,x2) €
R[z1](z2) is a polynomial inz, whose coefficients are polyno-
mials inx;.

For each fixedr,, the pair of polynomial®;(x1,z2) = 0,
p7(x1,%9) 0 has a solutionz, if and only if the cor-
responding resultant matrixS,, ,.(z1) is singular. Here,
deg,, {ps(z1,22)} = 4 anddeg,, {p7(z1,z2)} = 6 so that the

2n this case, it turns out that the coefficient of thé is zero so that
ps(21,22) has degree 4 in.
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resultant matrixS,, ,.(z1) is an element ofR*9*1%[z,], that 80
is, it is a 10x 10 matrix whose elements are polynomials in 8ot
1. The determinant of this matrixz;) £ det S,,. ,.(z1) is a
polynomial inz;. For any(z19, z20) Which is a simultaneous
solution of ps(z1,22) = 0, pr(z1,22) = 0, it must follow 60F
thatr(z19) = 0. Consequently, finding the rootgz,) gives
candidate solutions for; to check for common zeros of r
ps(z1,22) = pr(w1,22) = 0.
In more detail, the resultant polynomia{z;) of the pair 30}
{ps(z1,z2), p7(x1,22)} was found using the software package
MATHEMATICA with the Resultant command [24]. The
polynomial (z5) turned out to be a 22nd-order polynomial o[-
given by

85 1 1z 14 s 18 2z 22 24 28
r(z1) = 6 777216m*(m — x1)*r2(z1) _ . ,
Fig. 3. Switching angle8,, 8, 65 in degrees versus:.

where r1(z1) is a ninth-order polynomial as given in the

s Inim| e th i th n
Appendix. Note that:; = m is a zero ofr(z1 ). However w0 ke : e
3 o3
p5(m7$2) —5m — 20m3 + 16m5 BOI oo b N thetat
pr(m, x3) = — Tm + 56m® — 112m® + 64m” nf-
. 60
and, as these two polynomials have a common zero only for T
m = 0, only the roots of-;(z1) = 0 need be checked. L
The algorithm is as follows. g wl
Algorithm for the Seven-Level Case
1) Givenm, find the roots ofr; (1) = 0. il
2) Discard any roots that are less than zero, greater than one, — =»f
or that are complex. Denote the remaining root§as}. wb
3) For each fixed zero,; in the set{z;}, substitute it into F A
p;s and solve for the roots gf;(x1;, 22) = 0. Se 1 1z 4 16 18 2 22 24 26 28
4) Discard any roots (im2) that are complex, less than zero m
or greater than one. Denote the pairs of remaining roqiﬁ. 4. Angles that give zero third and fifth harmonics and the smallest 11th
as{(z1;,25)}. and 13th harmonics.

5) Computen — z1; — z2; and discard any paiz:;, z2;)
that makes this quantity negative or greater than one. D&-0.01. Note that forn in the range from approximately 1.49
note the triples of remaining roots &1, z2r, 23x)}.  to 1.85, there are two different sets of solutions that solve (7).
6) Discard any triple for whichrs, < z9r < z1;, does not On the other hand, fom € [0,0.8], m € [0.83,1.15], and
hold. Denote the remaining triples d§x1;, 21, 231)}. m € [2.52,2.77], there areno solutions to (7). Interestingly,
The switching angles that are a solution to the three levielr m =~ 0.8, m ~ 0.82 andm =~ 2.76 there are (isolated)

system (7) are solutions.
In the rangen € [1.49, 1.85] for which there are two sets of
{611, 02, 030) } solutions, the solution which gives the smallest distortion due to

= {(cos™"(z11),cos™ ! (w21),cos ™ (w3;)) }.  the 11th and 13th harmonics is a good choice. This set of angles
is given in Fig. 4.
1) Minimization of the Fifth and Seventh Harmonic Compo- As pointed out above, fom € [0,0.8], m € [0.83,1.15],
nents: For those values o for which ps (21, z2), pr(z1,22) m e [2.52,2.77], andm € [2.78,3], there are no solutions
do not have common zeros satisfyigc 1 < 1,0 < z2 <1, satisfying the conditions (7). Consequently, for these ranges

the next best thing is to minimize the error of m, the switching angles were determined by minimizing
_ pi(z,me) | pE(ar,10) \/(p5/5)2+(p7/7)2. Fig. 5 shows a plot of the resulting
elanwe) = ==+ =g

mimimum error \/(p5/5)2 + (p7/7)° versusm for these

This was accomplished by simply computing the values o8lues ofmn.

c(jAz, kAy) for j, k = 0,1,2,---,1000 with Az = 0.001, As Fig. 5 shows, whem =~ 0.81 andm =~ 2.76, the error

Ay = 0.001 and then choosing the minimum value. is zero corresponding to the isolated solutions to (7) for those
2) Results for the Seven-Level Invertérhe results are sum- values ofm. Form = 1.15 andm = 2.52, the error goes

marized in Fig. 3 which shows the switching angtgs 6., to zero because these values correspond to the boundary of the

and 3 versusm for those values ofn in which the system exact solutions of (6). However, note, e.g., whenr= 0.25, the

(7) has a solution. The parameterwas incremented in stepserror is about 0.25, that is, the error is the same size.&3ther
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the minimum error\/(pg)/S)2 + (p7/7)% is too large to make
the corresponding switching angles for this interval of any usgg- 8. Normalized FFTi./am. versus frequency fom = 0.5.
Consequently, fofn in this interval, one must use some other
approach (e.g., PWM) in order to get reduced harmonics. For gitching algorithm in SIMULINK which is then converted to
other two interval$0.83, 1.15], [2.52,2.77], the minimum error C code using RTW (real-time workshop) framathworks The
\/(p5/5)2 v (p7/7)2 is around 5% or less so that it might beRT-LAB softwf';lr_e provides icons to interface the S_IMULINK
satisfactory to use the corresponding switching angles for the8 del to the d|g|tal Vo bogrd and con\{e_rts Deode .|nto exe-
intervals. Cu aples._ The time resolution (the precision for the time at which
a switch is turned on or off) was chosen to be 1/1000 of an elec-
trical cycle. For the 60-Hz frequency results reported here, this
comes to(1/60)/1000 = 16.7us. Using the XHP (extra high

A prototype three-phase 11-level wye-connected cascadeiformance) option in RT-LAB as well as the multiprocessor
inverter has been built using 100 V, 70 A MOSFETs as thaption to spread the computation between two processors, an
switching devices [1]. The gate driver boards and MOSFEExecution time of 16:s was achieved.
are shown in Fig. 6. A battery bank of 15 SDCSs of 48 Vs Note that while the computation of the lookup table of Figs. 3
dc (not shown) each feed the inverter (five SDCSs per phasahd 4 require some offline computational effort, the real-time
In the experimental study here, this prototype system was camplementation is accomplished by putting the data (i.e., Figs. 3
figured to be a seven-level (three SDCSs per phase) convedrd 4) in a lookup table and therefore does not require high
with each level being 12 V.The ribbon cable shown in the figuremputational power for implementation.
provides the communication link between the gate driver boardExperiments were performed to validate the theoretical
and the real-time processor. In this work, the RT-LAB real-timeesults of Section 11I-B2. That is, the elimination of the fifth
computing platform fronOpal-RT-Technologies In¢13] was and seventh harmonics (at 300 and 420 Hz, respectively) in
used to interface the computer (which generates the logic silje three phase output of a mutlilevel inverter. Recall, from
nals) to this cable. The RT-LAB system allows one to write th8ection Ill, that the triplen harmonics (180, 360, 540, etc.) in

IV. EXPERIMENTAL WORK
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each phase need not be canceled as they automatically cancel

in the line-to-line voltages. Experimental data was taken for the'9- 7 iS the plot of the phase voltage for = 0.5, and the
parametern having the values: — 0.5, 1.0, 1.5, 2.0, and 2.5. corresponding FFT of this signal is given in Fig. 8. Fig. 8 shows

In this set of data, the angles were chosen according to Fig0-225 normalized magnitude of the fifth harmonic and a 0.15

The frequency was set to 60 Hz in each case, and the proglng%malized magnitude of the seventh harmonic for a total nor-
was run in real time with a 1@s sample period, i.e., the logicmalized distortion 0\3/(0.225)2 + (0.15)* = 0.27 due to these
signals were updated to the gate driver board everysl6 two harmonics. Fig. 5 shows an error of about 0.12m.at 0.5

The voltage was measured using a high-speed data acdoi-a normalized magnitude ©f.125/0.5 = 0.25 because of
sition oscilloscope every, = 5 us, resulting in the data these two harmonics, which is in close agreement. At this low
{v(nT,),n=1,...,N} whereN = 3(1/60)/ (5 x 107¢) = value form, only one SDCS of the converter is used to achieve
10000 samples corresponding to three periods of the 60-Hze fundamental amplitude, and nothing can be done to elimi-
waveform. A fast Fourier transform was performed on thigate any harmonics without additional switching.
voltage data to ge{d(kwo),k=1,...,N} where the fre-  Fig. 9 is the plot of the phase voltage far= 1. The corre-
guency increment isvg (2w /Ts)/N 27(20) rad/s sponding FFT of this signal is given in Fig. 10. Fig. 10 shows
or 20 Hz. The numbefi(kwy) is simply the Fourier coef- a 0.07 normalized magnitude of the fifth harmonic and a 0.05
ficient of the kth harmonic (whose frequency v, with normalized magnitude of the seventh harmonic for a total nor-
wo = (2r/N)(1/T)) in the Fourier series expansion ofmajized distortion o\!(O.O?)2 + (0.05)* = 0.086 due to these
the phase voltage signal(t). With a, = [6(kwo)| and two harmonics. Fig. 5 predicts an error of about 0.07.a¢ 1.0
@max = max {|0(kwo)|} , the data that is plotted is the normal<or a4 normalized magnitude 6£07/1 = 0.07 due to these two
ized magnitudeu /amax. harmonics which again is in close agreement.
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Fig. 11 is the plot of the phase voltage for = 1.5. The
corresponding FFT of this signal is given in Fig. 12. Fig. 1,
shows essentially zero for the normalized magnitude of the fif
harmonic and about 0.01 normalized magnitude of the sevel
harmonic for a total normalized distortion of 0.01 due to thes
two harmonics which corresponds well with the predicted err
of zero in Fig. 5. Note that there are still large triplen harmonic

in the phase voltage, but these cancel in the line-line voltage <,

Fig. 13 is the plot of the phase voltage far = 2. The cor-
responding FFT of this signal is given in Fig. 14. Fig. 14 show
the fifth and seventh harmonics are zero as predicted in Fig.

Fig. 15 is the plot of the phase voltage far = 2.5, and its
corresponding FFT is given in Fig. 16. Fig. 16 shows the fift
and seventh harmonics are zero as predicted in Fig. 5.

Form = 1.83, there are two possible set of solutions whicl
generate zero fifth and seventh harmonics (See Figs. 3 and

To compare the two sets of switching angles, Fig. 17 shows tiic

Phase Voltage vs Time
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780 Hz, respectively) are both 0.04 when the switching angles

are chosen according to Fig. 4. (1
In contrast, Fig. 18 is an FFT of the data = 1.83) in

which the other set of switching angles is chosen. In this case[2]

Fig. 17 shows the fifth and seventh harmonics are zero, but the

normalized 11th and 13th harmonics are about 0.06 and 0.04g)

respectively.

V. CONCLUSION AND FURTHER WORK [4]

A full solution to the problem of eliminating the fifth and
seventh harmonics in a seven level multilevel inverter has[o]
been given. Specifically, resultant theory was used to com-!
pletely characterize for each when a solution existed and
when it did not (in contrast to numerical techniques such asl’]
Newton-Raphson). Futher, it was shown that for a range of
values ofm, there were two sets of solutions and these valuesig)
were also completely characterized. For each valuenof
the solution set that minimized the 11th and 13th harmonic [g]
was chosen. Experimental results were also presented and
corresponded well to the theoretically predicted results. In
[17], the authors have extended this work to the case studied
by Cunnyngham [6] where the separate dc sources do not gil2)
provide equal voltagegjy..

[13]

APPENDIX [14]

RESULTANT POLYNOMIAL

[15]
T1 (.T)l)

=6125m — 49 000m> 4+ 137 200m° — 179 200m”
+ 116 480m° — 35840m!* + 4096m'?
— 1225021 4+ 220 500m>z1 — 882 000m* 21
+1512000m8z; — 1245 440m8z1 + 465920m 0z,
— 61440m* 2z, — 367 500ma? + 2 352 000m>z?
— 5644 800m°z? + 6048 000m " z? — 2795 520m°z?

[16]

(17]

(18]
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