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Elimination of Harmonics in a Multilevel Converter
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Abstract—Eliminating harmonics in a multilevel converter in
which the separate dc sources vary is considered. That is, given
a desired fundamental output voltage, the problem is to find
the switching times (angles) that produce the fundamental while
not generating specifically chosen harmonics. Assuming that the
separate dc sources can be measured, a procedure is given to find
all sets of switching angles for which the fundamental is produced
while lower order harmonics are eliminated. This is done by
first converting the transcendental equations that specify the
elimination of the harmonics into an equivalent set of polynomial
equations. Then, using the mathematical theory of resultants, all
solutions to this equivalent problem can be found. Experimental
results are presented to validate the theory.

Index Terms—Converter, harmonic elimination, multilevel in-
verter, resultant theory.

I. INTRODUCTION

KEY ISSUE in designing an effective multilevel inverter

is to ensure that the total harmonic distortion (THD) in the
voltage output waveform is small enough. To do so requires both
an (mathematical) algorithm to determine when the switching
should be done so as to not produce harmonics and a fast real-
time computing system to implement the strategy. Work was re-
ported in [1] and [2] that presented a method to compute the
switching angles for the H-bridges in a cascaded converter using
the mathematical theory of resultants. In that work, a complete
solution was presented for computing all possible switching an-
gles that achieved the requisite fundamental voltage and elimi-
nated lower order harmonics. However, it was assumed that the
dc sources were all equal, which will probably not be the case
in applications even if the sources are nominally equal.

Here, it is shown how the method in [2] can be extended for the
nonequal or varying dc source case. Specifically, eliminating har-
monics in a multilevel converter in which the separate dc sources
do not have equal voltage levels is considered. That is, given a
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desired fundamental output voltage, the problem is to find the
switching times (angles) that produce the fundamental while not
generating specifically chosen harmonics. This technique differs
from that in [3] where the dc level of the sources were controlled
to a particular value. In this paper, the lower order harmonics are
eliminated making use of whatever value the dc-link voltages are
for the H-bridges. Related work includes [4] in which the method
in [2] is combined with a single harmonic elimination technique
while in [5] a genetic algorithm is used.

Assuming that the separate dc sources can be measured, a pro-
cedure is given to find all sets of switching angles for which the
fundamental is produced while the fifth and seventh are elimi-
nated. This is done by first converting the transcendental equa-
tions that specify the elimination of the harmonics into an equiv-
alent set of polynomial equations. Then, using the mathematical
theory of resultants, all solutions to this equivalent problem can
be found. In contrast to numerical techniques (e.g., see [6] and
[7]), this method guarantees that all solutions will be found and
is amethod that can compute the solutions fast enough for online
updates (needed as the voltage levels of the dc sources change).
Experimental results are presented to validate the theory.

The interest here is a cascade multilevel inverter switching at
the fundamental frequency with nonequal dc sources. However,
many interesting pulsewidth-modulation (PWM) techniques
have been proposed for controlling these inverters, for example,
[71-[9] where in [9] harmonic elimination was studied by phase
shifting the carrier frequency.

II. CASCADED H-BRIDGES

The cascade multilevel inverter consists of a series of
H-bridge (single-phase full-bridge) inverter units. As pre-
viously mentioned, the general function of this multilevel
inverter is to synthesize a desired voltage from several separate
dc sources (SDCSs), which may be obtained from batteries,
fuel cells, solar cells, and ultracapacitors. Fig. 1 shows a
single-phase structure of a cascade inverter with SDCSs [10].
Each SDCS is connected to a single-phase full-bridge inverter.
Each inverter level can generate three different voltage outputs,
+Vde, 0, and — V. by connecting the dc source to the ac output
side by different combinations of the four switches, Sy, So,
S3, and S4. The ac output of each level’s full-bridge inverter
is connected in series such that the synthesized voltage wave-
form is the sum of all of the individual inverter outputs. The
number of output phase voltage levels in a cascade multilevel
inverter is then 2s + 1, where s is the number of dc sources.
An example phase voltage waveform for an 11-level cascaded
multilevel inverter with five SDSCs (s = 5) and five full
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Fig. 1. Single-phase structure of a multilevel cascaded H-bridges inverter.
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Fig. 2. Output waveform of an 11-level cascade multilevel inverter.

bridges is shown in Fig. 2. The output phase voltage is given by
Vagn = U1 + V2 + U3 + v4 + vUs.

With enough levels and an appropriate switching algorithm,
the multilevel inverter results in an output voltage that is al-
most sinusoidal. For the 11-level example shown in Fig. 2, the
waveform has less than 5% THD with each of the active devices
switching only at the fundamental frequency.

III. SWITCHING ALGORITHM FOR THE MULTILEVEL
CONVERTER

The Fourier series expansion of the (stepped) output voltage
waveform of the multilevel inverter with nonequal dc sources is

Viwt)= Z %(Vlcos(nﬂl)—i—---—i—Vscos(nHS))sin(nwt)

n=1,3,5,...
(H

where s is the number of dc sources, and the product V;Vy. is
the value of the #** dc source (if all the dc sources have the same
value Vg, then Vi =V, = ... =V, = 1). The objective here is
to choose the switching angles 0 < 81 < s < --- < 8, < 7/2
so as to make the first harmonic equal to the desired fundamental
voltage V; and specific higher harmonics of V(wt) equal to
zero. As the application of interest here is a three-phase power
system, the triplen harmonics in each phase need not be elimi-
nated as they automatically cancel in the line-to-line voltages.

As an example, a three dc source case is now considered so
that the switching angles are chosen so as to not generate the
fifth- and seventh-order harmonics while achieving the desired
fundamental voltage. The mathematical statement of these con-
ditions is then

AVye
Td (V1 cos(1) + Vacos(B2) + Vacos(b3)) =V

V1 cos(b61) 4+ Va cos(562) + Vs cos(563) =0
Vicos(T01) + Vacos(70:) + Vi cos(763) =0.  (2)

This is a system of three transcendental equations in the un-
knowns 61, €5, and f5. One approach to solving this set of non-
linear transcendental equations (2) is to use an iterative method
such as the Newton—Raphson method [11]. In this work, the
method given in [12] is extended to find all solutions to (2).
This methodology is based on the mathematical theory of re-
sultants of polynomials which is a systematic procedure for
finding the roots of systems of polynomial equations [13]. To
use the method, the set of equations (2) is first converted to a
polynomial system by setting 1 = cos(6y), 2 = cos(bs),
x3 = cos(f3), and using the trigonometric identities cos(56) =
5cos(f) — 20 cos®(6) + 16 cos®(#), cos(70) = —T7cos(#) +
56 cos®(f) — 112 cos®(#)+64 cos™(#) to transform (2) into the
equivalent conditions

pi(z) 2 Vizy + Vazo + Vazs —m = 0

3
ps(a) 23 Vi (5a; — 2027 + 1627) =0
=1
3
pe(x) 2 3 Vi (<Tay +562¢ — 11247 + 6427) =0 (3)

=1

where z = (z1,22,23) and m 2 Vy/(4Vae /). The mod-
ulation index is m, = m/s = Vy/(s4Vye/7). This fol-
lows from the fact that each inverter has a dc source that
is nominally equal to V4. so that the maximum output
voltage of the multilevel inverter is sVg.. Consequently,
a square wave of amplitude sVg. results in the maximum
fundamental output possible of Vimax = 4sVae/m so that
Mg 2 Vi/Vimax = Vi/(s4Vae/T) = m/s.

This is now a set of three polynomial equations in the three
unknowns x1, za, x3 (see also [14] where a polynomial system
was used). Further, the solutions must satisfy 0 < z3 < zs <
il S 1.
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Next, one substitutes z3 = (m — (Viz1 + Vazs))/Va into p;,
p7 to get

ps(x1, 22) = Vi (511 —2023 +1623 )+ Va(5x0 — 2023+ 1613)
— (Vi1 + V;
51 <m (Viz1 + zxz))
V3
— (Vizy + Vo) \*
20V, <m (Vizy + 2372))
Vs
+16V5 (m — (Vi +Vzwz)>°
V3
and
pr(@1, ) = Vi(=Taxy + 5623 — 11225 + 64x])

+ Vo(—=Txo 4 562311225 + 6427)

" <m — (Viz1 + szz))
Vs
3
+56V5 (m - (Vla;/l + szz)>

—112V; < (lel + Vf)xo )

(V1561 + Vo)
V3

+ 64V; (

A. Elimination Using Resultants

In order to explain how one computes the zero sets of poly-
nomial systems, a brief discussion of the procedure of solving
such systems is now given. A systematic procedure to do this
is known as elimination theory and uses the notion of resul-
tants [15], [16]. Briefly, one considers a(z1,z2) and b(x1, x2)
as polynomials in 2 whose coefficients are polynomials in z;.
Then, for example, letting a(x1, z2) and b(x1, x2) have degrees
3 and 2, respectively in x4, they may be written in the form

alxy,z9) = ag(xl)xg + ag(xl)xg + a1 (x1)x2 + ap(x1)
b(xl,xz) :bz(xl)u’c% + bl(xl)xz + bo(xl).

The n x n Sylvester matrix, where n = deg,, {a(z1,29)} +
deg,, {b(x1,x2)} = 3+ 2 = 5, is defined by

ao(@1) 0 bo(w) O 0

0,1(56'1) 0,0(56'1) bl(xl) bo(xl) 0
Sa,b(xl) = &2(371) &1(371) 52(371) 51(371) bo(»’cl)
0,3(1}1) &2(1}1) 0 bz(.%'l) bl(xl)
0 as(xy) 0 0 ba(z1)

The resultant polynomial is then defined by

r(z1) = Res (a{x1,22), b(x1,22),22) 2 det Saplz1) 4
and is the result of solving a(x1,z2) = 0 and b(z1,22) = 0
simultaneously for z1, i.e., eliminating x5. See [13], [15]-[17]
for an explanation of this fact. The computational challenge for
this approach is in the symbolic calculation of the determinant
of the Sylvester matrix. However, the results in [18], [19] show

that this computation can be carried out quite efficiently.

B. Switching Angle Solutions

The goal here is to find simultaneous solutions of
ps(x1,29) = 0, pr(x1,22) = 0. For each fixed 21, p3(x1, z2)
can be viewed as a polynomial in z» whose coefficients are
polynomials in z1. For each fixed z1g, the pair of polynomials
ps(z1,22) = 0, pr(x1,22) = 0 has a solution z+ if and only
if their corresponding resultant matrix Sy, p,(%10) is singular.
Here, deg,,, {ps(x1,22)} = 5 and deg,, {p7(x1,22)} = 7 s0
that the resultant matrix S, ,, (z1) is an element of R12<1%[z]
and its determinant 75 7(x1) 2 det Sps.ps (1) is a polynomial
maexy.

The key point here is that for any (z19,229) which is a si-
multaneous solution of p3(x1,22) = 0, pe(z1,22) = 0, it
must be that r5 7(x10) = 0. Consequently, finding the roots
of r;7(z1) = 0 gives candidate values for z; to check for
common zeros of ps(z1,x2) = 0, p7(21, z9) = 0. The resultant
polynomial r57(x1) of the pair {ps(x1,22),p7(x1,22)} was
found with MATHEMATICA using the Resultant command
and turned out to be a 35th-order polynomial. The explicit al-
gorithm implemented to compute the switching angles is as fol-
lows.

Algorithm for the Seven-Level Case

1) Given m and the measured values of Vi, Vs, V3, find the
roots of 75 7(x1) = 0.

2) Discard any roots that are less than zero, greater than 1 or
that are complex. Denote the remaining roots as {z1; }.

3) For each fixed zero z1, in the set {x1, }, substitute it into
p5 and solve for the roots of pz(z1;, z2) = 0.

4) Discard any roots (in x5) that are complex, less than zero
or greater than one. Denote the pairs of remaining roots
as {(z15,2;)}-

5) Compute m — (Viz1; + Vaxe;)/V3 and discard any
pair (z1;,%2;) that makes this quantity negative or
greater than one. Denote the triples of remaining roots as
{(x1k; Tok, T38) }-

6) Discard any triple for which zsr < 9 < z1x does not
hold. Denote the remaining triples as {(z1;, Z2z, 31) }-
The switching angles that are a solution to the three-level

system (2) are

{(011,021,63)} = {(cosfl(xu),cosfl(xﬂ),cosfl(xgl))} .

This algorithm was used to find the switching angles for each
phase in a multilevel inverter with nonequal dc sources. The
results for phase o are plotted in Fig. 3 where dc source volt-
ages for this phase were measured to be ViV3. = 60.0 V,
VoVye = 47.0 V and V3V, = 43.1 V. It is important to note
that the interest here is in a symbolic expression for the final
resultant polynomial. That is, the final resultant polynomial is
more precisely written as (21, m, Vae1, Vdes, Vaes) showing
that not only is it a function of the indeterminate x1, but also
of the parameters 1, Vie1, Vaeo, Vies. This is the desired form
because, for example, in a hybrid electric vehicle the batteries
powering the vehicle will not usually be at the same voltage level
and will vary with use. Consequently, the dc source voltages
could be measured, and the switching angles in Fig. 3 could be
recomputed online to account for changes in the source volt-
ages. This is because, starting with r7(z1,m, Vac1, Va2, Vaes)s
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Fig. 4. Total harmonic distortion versus m for all possible switching angles
solutions.

the calculation to compute the data of Fig. 3 takes less than a
second for any given modulation index. In contrast, if iterative
numerical techniques are used, one is not guaranteed that the
solution will converge (the initial guess has to be “close” to the
solution or there may be no solution), nor that the particular so-
lution obtained is the only solution and, therefore, the best in
any sense.

Fig. 3 shows the switching angles 61, 65, 83 versus m for
those values of m in which the system (2) has at least one so-
lution set. The parameter m was incremented in steps of 0.01.
Note that for m in the range from approximately 1.1 to 2.0, there
are at least two different sets of solutions and sometimes three
sets.

One clear way to choose a particular solution is simply to pick
the one that results in the smallest THD. This is shown in Fig. 4
corresponding to the solutions given in Fig. 3. Choosing the
switching angles based on this criteria, the multiple switching

THD.

Three Unequal DC Sources (Phase A) — Lowest THD

Fig. 6. Total harmonic distortion versus m for the switching angles that result
in the smallest THD.

angle solutions given in Fig. 3 reduce to the single set of solu-
tions given in Fig. 5, and the corresponding THD is shown in
Fig. 6.

IV. EXPERIMENTAL WORK

A prototype three-phase 11-level wye-connected cascaded
inverter has been built using 100-V 70-A MOSFETs as the
switching devices. The gate driver boards and MOSFETsSs are
shown in Fig. 7. A battery bank of 15 SDCSs of 60 V dc
(nominally) each feed the inverter configured with five SDCSs
per phase [20]. In the experimental study here, this prototype
system was configured to be seven levels (three SDCSs per
phase).

The ribbon cable shown in the figure provides the communi-
cation link between the gate driver board and the real-time pro-
cessor. In this work, a real-time computing platform [21] was
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Fig. 7. Gate driver boards and MOSFETs for the multilevel inverter.

TABLE 1
EXPERIMENTAL H-BRIDGE DC-LINK VOLTAGES

Phase V1 Vdc Vg Vdc V3 Vdc
a 60.0 V 47.0V 431V
b 599V 484V 431V
c 60.1 V 473V 41.4V

Voltage vs. Time (m=1.20)
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Fig. 8. Three-phase voltage waveforms for m, = 0.4 (m = 1.2).

used to interface the computer (which generates the logic sig-
nals) to this cable. This system allows one to implement the
switching algorithm as a lookup table in SIMULINK which is
then converted to C' code using RTW (real-time workshop) from
The MathWorks Inc. The software provides icons to interface
the SIMULINK model to the digital I/O board and converts the C
code into executables.

The time resolution (the precision for the time at which a
switch is turned on or off) was chosen to be 1/1000 of an elec-
trical cycle. For a 60-Hz frequency requirement, this comes to

Normalized Magnitude of Line—line Voltage vs Frequency (m=1.20)
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Fig. 9. Fast Fourier transform (FFT) of the line-line voltage between phases
a and b.

Ia, Ih, and Ic vs Time (m = 1.2, frequency = 37 Hz)
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Fig. 10. Phase currents versus time in seconds for m, = 0.4 (m = 1.2).

(1/60)/1000 = 16.7 us. Note that while the computation of
the lookup table of Fig. 5 requires some offline computational
effort, the real-time implementation is accomplished by putting
the data (i.e., Fig. 5) in a lookup table and, therefore, does not
require high computational power for implementation.

The multilevel converter was attached to a three-phase induc-
tion motor with the following nameplate data:

rated horsepower = 1/3 hp
rated current = 1.5 A
rated speed = 1725 r/min
rated voltage = 208 V (rms line-to-line at 60 Hz).

The voltage for each separate dc source of each phase was mea-
sured and is given in Table I. In the first set of experiments,
the parameter m was set equal to 1.2 (for a modulation index
mg = 1.2/3 = 0.4), and the frequency was set to 60 Hz.
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Normalized FFT of Ia vs Frequency (m = 1.2; Vl =60.0V; V2 =470 V; V‘ =43.1V)
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Fig. 12. Voltage waveforms for m, = 0.65 (m = 1.95).

The switching angles for phase a were taken from Fig. 5 with
m = 1.2 while a similar computation was done to obtain the
switching angles for phases b and ¢. The resulting three phase
voltages were measured, and both the phase and line-line volt-
ages are shown in Fig. 8. The FFT of the line-line voltage be-
tween phases a and b is shown in Fig. 9.

Note that the fifth and seventh harmonics are zero as pre-
dicted. The phase currents in the motor produced by the voltages
of Fig. 8 are shown in Fig. 10. The FFT of the current waveform
of phase a is shown in Fig. 11. Note that the harmonic content
of the current is significantly reduced compared to the harmonic
content of the voltage due to filtering by the motor’s inductance.
The THD for the current waveform of phase a was computed
from the FFT of Fig. 11 and found to be 4.8%.

Normalized Magnitude of Line—line Voltage vs Frequency (m=1.95)
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1 T T Y

Phase Currents (Amps)

1.5 M H i
0 0.01 0.015 0.02
Time (Seconds)

0.005 0.025

Fig. 14. Current waveforms for m, = 0.65 (m = 1.93).

In the second set of experiments, the parameter m was set equal
to 1.95 (for a modulation index m, = 1.95/3 = 0.65), and the
frequency was set to 60 Hz. The switching angles for phase a
were again taken from Fig. 5 with m = 1.95 while a similar
computation was done to obtain the switching angles for phases
b and c. Both the phase and line-line voltages applied to the
motor are shown in Fig. 12, and the FFT of the line-line voltage
between phases a and b is given in Fig. 13. Note that the fifth
and seventh harmonics are zero as predicted.

Fig. 14 shows the three-phase motor currents resulting from
applying the voltages of Fig. 12 to the motor. The FFT of the
current waveform of phase a is shown in Fig. 15. Again, the
harmonic content of the current is significantly reduced com-
pared to the harmonic content of the voltage because of filtering
by the motor’s inductance. The THD for the current waveform
of phase a was computed using the FFT data of Fig. 15 and was
found to be 4.15%.
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Normalized FFT of I:I vs Frequency (m = 1.95; Vl =60.0 V; V2 =47.0V; V; =43.1V)
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Fig. 15. FFT of the phase-a current waveform shown in Fig. 14.

V. CONCLUSION

Elimination theory and the notion of resultants can be used
to eliminate the lower order harmonics in a multilevel converter
that has nonequal dc sources. This method is expected to have
widespread application as most multilevel converters do not
have dc sources that are exactly equal.
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