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Abstract

We present an efficient and inexpensive to develop application for interactive high-
performance parallel visualization. We extend popular APIs such as Open Inventor
and VTK to support commodity-based cluster visualization. Our implementation
follows a standard master /slave concept: the general idea is to have a “Master” node,
which will intercept a sequential graphical user interface (GUI) and broadcast it to
the “Slave” nodes. The interactions between the nodes are implemented using MPI.
The parallel remote rendering uses Chromium. This paper is mainly the report
of our implementation experiences. We present in detail the proposed model and
key aspects of its implementation. Also, we present performance measurements,
we benchmark and quantitatively demonstrate the dependence of the visualization
speed on the data size and the network bandwidth, and we identify the singularities
and draw conclusions on Chromium’s sort-first rendering architecture. The most
original part of this work is the combined use of Open Inventor and Chromium.
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1 Introduction

We are interested in large scale high-performance scientific parallel visualiza-
tion with real-time interaction. More precisely, we want to support the inter-
active extraction of insight from large sets of data. Also, in order not to miss
important details in the data, we would like to develop high resolution visu-
alization. Our interest is motivated by today’s technological advances, which
stimulate and facilitate the development of increasingly complicated mathe-
matical models. Visualization with real-time interaction is essential for better
analysis and understanding of the masses of data produced by such models, or
by devices such as Magnetic Resonance Imaging (MRI) and laser-microscope
scanners. Some of the applications that we are interested in and work on are
given on Figure 1. Others come from high-energy physics, climate modeling,
etc. Currently the size of the data sets that we are dealing with is around 1

Fig. 1. Left: mouse brain volume visualization on a 512 X 256 X 256 grid; Middle:
Fluid flow isosurface visualization; Right: Material micro-geometry studies: crushed
rock volume visualization on a 1007 X 1007 X 256 grid. The three examples are
rendered in parallel on a display composed of 4 tiles.

We develop an inexpensive and, as the results show, efficient application. The
approach is as follows:

e Do remote parallel rendering to a large tiled display (see for example Figure
1 where we show displays composed of 4 tiles).
e Use commodity-based clusters connected with high speed network.

e Extend and combine already existing APIs such as Chromium, Open Inven-
tor, VTK, etc.

The APIs considered are open source. Open Inventor (see [21,22]) is a library of
C++ objects and methods for building interactive 3D graphics applications,
VTK (see [17,18]) is another widely used API for visualization and image
processing, and Chromium (see [7,8,4,11]) is an OpenGL [16] interface for
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cluster visualization to a tiled display. Chromium is based on WireGL [9] and
provides a scalable display technology. The latest Chromium paper [10] reports
on the implementation of components (stream processing units, or SPUs) that
can be used in sort-last parallel graphics applications. More on the sort-last
parallel rendering approach can be found in [13] and [23].

There are feasible alternatives to our approach. For example, the tiled display
can be replaced with a high resolution flat panel driven by a single worksta-
tion, the visualization clusters can be replaced with fast sequential machines,
and the process of extending and combining already existing APIs can be re-
placed with building the entire visualization system from scratch. The IBM’s
T221 display with its maximum resolution of 3840 x 2400 brings to the scien-
tist’s desktop a resolution that is high enough for many applications. For such
cases this is a preferred alternative and we have it as an option in our im-
plementation. Similarly, for “small” data sets we prefer sequential processing.
Extending and combining visualization APIs is a popular and in many cases
preferred development approach since one can easily leverage already existing
and powerful APIs. Examples are the extension of VTK to ParaView (see
[12]) and parallel VTK (see [1]), VisIt (see [3]), etc. Building an entire visu-
alization system from scratch may be efficient for very specific requirements,
but in general is expensive and time consuming (see for example NASA’s long
term project ParVox [15]). Our goals, apart from developing the application
outlined above, also include studying and identifying the singularities of the

Chromium API. We concentrate on Chromium’s sort-first rendering, a model
inherited, and further developed from the WireGL API.

The parallel model that we consider is MIMD (multiple instructions — multiple
data). MIMD parallel models are common in the design of parallel visualiza-
tion software for clusters of workstations. A fundamental framework is when
cluster nodes process separate parts of a global scene and their output is com-
posited and rendered to a tiled display. Providing MIMD model visualization
systems with efficient user interaction has become a task of great interest.
See for example [20]. The continuous interest also prompted the development
of a new cluster rendering utility toolkit (CRUT) which was reported in [2].
CRUT is a glu-like toolkit that will facilitate the development of user in-
teraction within Chromium, and hence the development of applications and
visualization API extensions like the one that we developed. We pursue a Mas-
ter/Slave paradigm: we declare one of the cluster nodes as GUI Master, use
the Master to intercept the sequential user input, and broadcast that input
in a user defined protocol to the other nodes (here called Slave nodes). This
yields a system where the GUI Master sends to the Slave nodes instructions of
“how and when” to redraw their part of the scene. The user interface in this
case is part of the visualization software. Another implementation is to have
the GUI Master separate from the visualization software. The interaction in
this case would be through a GUI window that will simulate a “parallel in-



teraction device” that takes a sequential user input and broadcasts it to the
cluster nodes (through sockets). The details are given in the following sections.

The article is organized as follows. In Section 2 we describe our model frame-
work and its implementation in extending Open Inventor and VTK. Next (in
Section 3) we discuss issues that are important for the development of high
performance visualization on clusters of workstations. Also, we provide some
of our performance results. The last section (Section 4) summarizes the results
of this work.

2 Parallel GUI model and implementation

Parallel GUI for a MIMD parallel visualization model requires the presence
of a Master node that will synchronize with the other nodes the redrawing of
the consecutive scenes according to a sequential user input. We consider two
variations of parallel GUI. Both have similar visualization pipelines (see Figure
2). The parallel GUI (ParaMouse) gets the sequential user input (through
mouse, keyboard, etc.) and broadcasts it to the OpenGL applications through
sockets. Every application is visualizing a separate part of a global scene. The
applications are bound together by MPI communications. The OpenGL calls
that the applications make are intercepted by Chromium and sent through the
network to the visualization servers, which composite the input and render it
to a tiled display.

Chromium’s parallelization model (denoted in the article by CPM) is repre-
sented with the pseudo-code:

glXMakeCurrent (getDisplay (), getNormalWindow(),
getNormalContext());
if (clearFlag)
glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glBarrierExecCR(MASTER_BARRIER) ;

do sequential OpenGL rendering of the local scene

glBarrierExecCR(MASTER_BARRIER) ;
if (swapFlag)

glXSwapBuffers(getDisplay(), getNormalWindow());
else

glXSwapBuffers(getDisplay (), CR_SUPPRESS_SWAP_BIT);
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Fig. 2. Visualization pipeline. The parallel GUI (ParaMouse) gets the sequential user
input (through mouse, keyboard, etc.) and broadcast it to the OpenGL applications
through sockets. The applications use Chromium to render to a large tiled display.

where the display obtained is composited if clearFlagis 1 for all processors,
swapFlag is 1 for processor with rank 0, and 0 for the rest, and tiled if
clearFlag and swapFlag are 1 only for processor with rank 0.

To extend Open Inventor and VTK (or any API) to support interactive cluster
visualization within the above framework we did the following:

e Apply the CPM to the APIs rendering method(s).
e Implement the ParaMouse parallel GUI or extend the API’'s GUI using the
Master-Slave concept.

To implement the first step for Open Inventor we extended the SoXtRender-
Area::redraw() method. For VTK this step is implemented by David Thomp-
son, Sandia National Laboratory [19]. We implemented in Open Inventor the
Master-Slave concept by extending the GUI that ivview provides. Function
main in ivview was extended by implementing the pseudo-code:

declare processor with rank O as Master;
if (Master)

run GUI as implemented in ivview;
else

listen for instructions from the Master;



We extended the callback functions triggered by the devices that Open Inven-
tor’s GUI handles (mouse, keyboard, etc). The callback functions responding
to user input have MPI_Isend of the invoked user input in the Master node
to the Slave nodes. The Slave nodes are in “listening” mode (MPI_Recv or
MPI _Irecv while animating), which is given with the pseudo-code below, and
upon receiving data, representing instructions in an internally defined proto-
col, they call the action for the invoked input and redraw their part of the
global scene (if necessary).

// Initialize Inventor
SoDB: :init();
SoNodeKit::init();
SoInteraction::init();

// Build the Inventor’s objects and scene graphs
SoSeparator *root = new SoSeparator;

root->ref () ;

readScene(root, files);

// Create a Slave node ExaminerViewer
SoExaminerViewer *viewer = new SoExaminerViewer (crrank);
viewer->setSceneGraph(root) ;

// Chromium initialization

crctx = crCreateContextCR(0x0, visual);
crMakeCurrentCR(crwindow, crctx);
glBarrierCreateCR( MASTER_BARRIER, crsize);

glEnable (GL_DEPTH_TEST) ;
viewer->mainLoop();

The SoExaminerViewer class is based on the Open Inventor’s SoXtExamin-
erViewer class. The difference is that SoExaminerViewer does not have Xt
window interface function calls and the rendering is with the CPM.

The user interface is through the ivview window (see Figure 3, left), which
is blank and used only for the user input. The scene is drawn in separate
windows/tiles. The example from Figure 3 (right) shows a display with 4
tiles. There are 4 applications running, each of which visualize a sphere.

In VTK’s Master-Slave model we extend the vtkXRenderWindowlInteractor
class by:
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Fig. 3. Left: ivview window interface; Right: example of a display with 4 tiles.
The scene is rendered in parallel on the tiled display. The interactive user interface
is through the ivview window, with the functionality that ivview provides.

e Implementing “pure” X Windows GUI (no GL calls).
e Adding MPI send/receive calls for mouse and keyboard events.

For the ParaMouse interface we added in VTK a new interactor style,
called vtkInteractorStylePMouse.

3 Observations and performance results

We did our implementation and testing on a Beowulf cluster with 4 nodes,
each node with 2 Pentium III processors, running at 1 GHz. Every node has
Quadro2 Pro graphics card. The nodes are connected into a local area net-
work with communications running through 100 Mbit/sec fast Ethernet or
1 Gbit/sec fiber optic network. More about the general performance of this
particular machine can be found in [14].

The experience that we had in developing interactive parallel visualization is
summarized as follows:

(1) For the parallel model considered performance is problem and interaction
specific.
For example, depending on the data and the user interaction, the entire
global scene may be mapped to a single tile of the display. Also, the
Chromium bucketing strategy [8,4,11] will not work for scenes composited
of non-localized consecutive polygons.

(2) The GUI communications time is negligible compared to the visualization
time, which leads us to the scalability results reported in [8,4,11]. This
statement is supported by our next observation.



(3) We can send approximately 5,000 “small” (less then 100 bytes) mes-
sages/sec (see [14]).

(4) Chromium automatically minimizes data flow, except for geometry flow
(see below).

(5) It is advisable to keep small static scenes in display lists (see below).

The network data flow is usually the bottleneck in the visualization pipeline
that we consider. Chromium provides several techniques to minimize it. They
are: simplified network protocol, bucketing, and state tracking (see [8,4,11]).
None of these techniques however are intended for the automatic minimization
of the geometry flow, which usually is the most expensive component. For
example in animation the same objects are drawn without (or with minimal)
change from frame to frame. Nevertheless the scene is transmitted over the
network for every frame, creating an enormous bottleneck, as shown in the next
example. Data flow minimization techniques that exploit spacial or temporal
coherence of consecutive frames (see for example [24]) are not supported within
the current framework.

The following example illustrates items 4 and 5 from the above observations.
We use a small static scene composed of spheres with spikes, as the ones shown
on Figure 3, right. Each sphere is composed of 11,540 triangles. Sequentially,
one sphere is drawn by the Open Inventor at a rate of 195 frames/sec, i.e.
2,251,569 triangles/sec. For 2 spheres the rate is 117 frames/sec or 2,709, 130
triangles/sec, etc. The speed of visualizing 2 spheres on 2 processors (2 tiles)
is approximately 6 frames/sec. The composited visualization (2 processors, 1
tile) is approximately 3 frames/sec. Runs with various problem sizes and par-
allel visualization configurations give similar results in favor of the sequential
execution.

The enormous difference is due to the fact that in the first case the scene resides
in the graphics card memory, while in the second the same scene is transmitted
over the network for every frame. Table 1 gives more results related to the
network’s bandwidth bottleneck and the overall performance of the system.
The results are for different applications using the 100 Mbit and the 1 Gbit
network. The first one, mouse brain, comes from medical science and is a 3D
surface of a mouse brain. The size of the data is 16 MB. The 100 Mbit network
gets saturated and the frame rate of 0.46 frames/second is expected, since the
data traffic, although dependent on user interaction and locality of the scene
polygons, is proportional to the data size. The 0.46 frames/second translates
to 2.17 seconds per frame. The network transfer takes 1.75 seconds. The next
application, fluid flow, is an isosurface extracted from a fluid flow simulation
data. The beetle head is also an isosurface. It was extracted from the X-
ray computed microtomography data of an Alaskan spruce bark beetle. With
performance mainly depending on the data size we observe that doubling the
data size reduces the frame rate two times. Another application type that we



tested is ray tracing volume visualization. We applied it to X-ray computed
microtomography data of a rock sample of size 1 GB. This is an example
where a substantial part of the visualization is done in the CPU and only the
result, in terms of OpenGL primitives, is sent through the network. On the
100 Mbit network we get 12.5 seconds per frame. 10.1 seconds are spent in
the ray tracing algorithm (run on 4 cluster nodes with dual processor on each
node) and 2.4 seconds in transfer and rendering of the OpenGL commands
issued in the ray tracing algorithm.

Switching to the 1 Gbit network approximately doubles the performance re-
sults. Similar improvement was observed in [14] for various numerical analysis
applications. The ray casting relies mostly on the CPU’s performance and
switching to the 1 Bbit network did not show any speed up.

Frames per second using

Application Size
100 Mbit network | 1 Gbit network

mouse brain | 16 MB 0.46 0.87
fluid flow 40 MB 0.20 0.53
beetle head | 80 MB 0.09 0.25

Table 1. Dependence of the visualization speed on the data size and the network
bandwidth for different applications. The global scene is split into 4 and rendered
by 4 Chromium rendering SPUs to 4 tiles display.

We used SGI's pmchart to monitor the network traffic for the different appli-
cations described above and in Table 1. The network gets saturated for the
applications discussed. The network traffic in and out of every cluster node
looks like the one given on Figure 4.
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Fig. 4. Network utilization for the mouse brain application (data size 16 MB). We
show the traffic for one of the 4 cluster nodes over the 1 Gbit network. Left: traffic
in in Bytes; Middle: traffic out in Bytes; Right: network utilization.

The non-automatic mechanism that Chromium provides for acceleration (min-
imization) of the geometry flow is display lists. They are supported by send-
ing the lists to each rendering server, and thus guaranteeing their presence
on the server when they are called. Display lists in Open Inventor are cre-
ated for the parts of the scene that have as root SoSeparator nodes with
field renderCaching turned ON or AUTO (for more information see [21], pages



224-227). Using display lists we get a speed of 90 frames/sec for visualizing
2 spheres by 2 processors on composited display, and 80 frames/sec on tiled
display. Different parallel and display configurations illustrate the same or-
der of improvement. These results are comparable to the sequential ones. The
trade-offs are that the process is not automatic and that the display lists are
broadcast to all rendering servers and thus replicating the scene in each node.
Work on the automatic optimization of the geometry data flow can be found
in [5].

4 Conclusions

We developed an application for interactive parallel visualization on tiled dis-
plays for commodity-based clusters. We used Chromium’s parallel rendering
and extended popular visualization APIs, such as Open Inventor and VTK.
The most original part of this work is the combined use of Open Inventor
and Chromium. We gave implementation details and described our experi-
ence in the combined use of the Chromium’s rendering technology with Open
Inventor and VTK. A general conclusion is that fast sequential visualization
often relies on graphics acceleration hardware, data sampling methods, static
scenes, and data size within the hardware limitations, while the visualization
developed does not require expensive graphics hardware, provides high reso-
lution, facilitates well the visualization of time-varying scenes, and can handle
large data sets. We demonstrated a low cost (time, money, effort, etc.) of de-
velopment. Our benchmarks quantitatively demonstrated the bottleneck that
the network’s bandwidth presents in the sort-first rendering architecture. This
bottleneck makes the sort-first architecture more appealing for time-varying
data sets, commodity-based clusters with slow (or no) graphics acceleration,
and visualization algorithms that rely on the CPU’s speed, such as ray casting.
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