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• In designing and operating a power system, 

its dynamic performance subjected to 

disturbances such as condition changes and 

contingencies needs to be assessed.

• It is important that when the changes are 

completed, the system safely settles to a 

new operating condition.

• In other words, not only should the new 

operating condition be acceptable (as 

revealed by steady-state analysis) but also 

the system must survive the transition to the 

new condition without violating any 

constraint or reliability criteria. This 

requires dynamic simulation.

Why dynamic simulation
TRANSIENT STABILITY OF GENERATORS
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Industrial Practices in Power System Simulation

• Bulk power system model: 

   Differential-Algebraic-Equation (DAE) model:

• Simulation methods:

– Numerical integration methods such as Euler, Runge-Kutta and Trapezoidal-rule methods. 

– Linear or low-order approximation of nonlinear functions f and g 

– Slow due to small stepsizes (<1ms) for numerical stability or accuracy on large system models.

• Industry practices 

– For one contingency, commercial software typically requires 1-5 minutes to simulate 1 second of a 

detailed grid model such as a 70,000-bus Eastern Interconnection model (5,000-10,000 generators and 

100,000 state variables).

– Online simulations are performed on 1,000-3,000 critical contingencies every 10-15 min on a reduced 

model (~10,000 buses and 2,000 generators).
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A partitioned (alternating) scheme solving power system DAEs

• At each time step tn:
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Numerical Integration Methods

• Solving an initial value problem starting from x=x0 and t=t0

• Explicit Methods

– x is computed using only its past values, e.g. Forward 

Euler and R-K methods

 Forward Euler method:

• Implicit Methods

– x is computed also involving its future values, e.g. the 

Backward Euler and Trapezoidal-rule methods

 Backward Euler method:

• For stiff systems with large |max/min|, if t is too large the 
explicit methods have poor numerical stability while implicit 

methods have low accuracy
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f t
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Backward Euler Method (implicit)

t can be arbitrarily large as long as 

max has a negative real part 

(this method has A-Stability)

Forward Euler Method (explicit)

  The method is numerically stabile if

  max has a negative real part and

Comparison of Explicit and Implicit Methods
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When focusing on the 

fastest dynamics:
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Finding an Analytical Solution of Nonlinear Differential Equations

Adomian Polynomials
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Solving an SMIB System
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Applicable to any 

operating condition 

and any disturbance!
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Analytical Expansion
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Accuracy vs Order K
E
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A semi-analytical approach for time-domain simulation

Stage 1 (offline): Deriving the SAS with symbolic variables on time t, 

initial state xini and selected parameters 
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Stage 2 (online): Evaluating the SAS over consecutive time intervals 

until finishing the simulation period.

  

( ; (0), )SAS tx x μ

1 1( ; ( ), )SAS t t t−x x μ

t1 t2

2 2( ; ( ), )SAS t t t−x x μ

x

tT

( , , )

0 ( , , )

t

t

=


=

x f x y

g x y

0

• A semi-analytical solution (SAS) is an approximate but analytical solution of the DAE model.
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Forms and Mathematical Tools for Semi-analytical Solutions

=
=

=
0

( , )
          (0)

0 ( , )

x f x v
x x

g x v
















=

=

=

=












= 
 


 

+
 +


+ + 









00

00

00
0

00

1 0
0

2 0

0

( , , )

( , )

( , )
( , , )

( , )

( , )
( , )

1

1
1 ( , )

N
nn

N n
nn

M m
mm

SAS K k
kk

L

x x t

a x t

b x t
x x t

c x t

d x t
x

d x t

d x t

Related works:

[1] N. Duan, K. Sun, “Power System Simulation Using the Multi-stage Adomian Decomposition,” IEEE 
Trans. Power Systems, 2017

[2] C. Liu, B. Wang, K. Sun, “Fast Power System Dynamic Simulation Using Continued Fractions,” IEEE 
Access, 2018

[3] B. Wang, N. Duan, K. Sun, “A Time-Power Series Based Semi-Analytical Approach for Power System 
Simulation,” IEEE Trans. Power Systems, 2019

[4] Y. Liu, K. Sun, R. Yao, B. Wang, “Power System Time Domain Simulation Using a Differential 
Transformation Method,” IEEE Trans. Power Systems, 2019

[5] Y. Liu, K. Sun, "Solving Power System Differential Algebraic Equations Using Differential 
Transformation," IEEE Trans. Power Systems, 2020

[6] R. Yao, K. Sun, F. Qiu, “Vectorized Efficient Computation of Pade Approximation for Semi-Analytical 
Simulation of Large-Scale Power Systems,” IEEE Trans. Power Systems, 2019

[7] R. Yao, K. Sun, et al, “Voltage Stability Analysis of Power Systems with Induction Motors Based on 
Holomorphic Embedding,” IEEE Trans. Power Systems, 2019

[8] R. Yao, Y. Liu, K. Sun, et al, "Efficient and Robust Dynamic Simulation of Power Systems with 
Holomorphic Embedding," IEEE Trans. Power Systems, 2020

[9] Y. Liu, K. Sun, J. Dong, "A Dynamized Power Flow Method based on Differential   
Transformation,” IEEE Access, 2020

[10] B. Park, K. Sun, et al, "Examination of Semi-Analytical Solution Methods in the Coarse Operator of 
Parareal Algorithm for Power System Simulation,” IEEE Trans. Power Systems, 2021 (Adomian 
Decomposition and Homotopy Analysis)

[11] Y. Liu, B. Park, K. Sun, et al, "Parallel-in-Time Power System Simulation Using a Differential  
Transformation based Adaptive Parareal Method,” IEEE Open Access Journal of Power and Energy, 2022

[1]

[1][3]-[5]
[7]-[11]

[6]

[2]



14

Analytical/numerical solution

Semi-analytical Simulation of a Large-scale Power Grid

Generator/Motor DEs Generator/Motor/Network AEs
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• 1-stage analytical strategy: Find and compute SAS 

while simulating. 

– Pro: Minimum storage for symbolic SAS

– Con: All online work

• 2-stage analytical strategy (integrated scheme): 

Offline find SAS and online compute SAS. 

– Pro: Minimum online computation

– Con: Needs storage for complex SAS if 

symbolizing many parameters.

• 2-stage analytical-numerical strategy (partitioned 

scheme replacing numerical DE solver by SAS): 

Offline find SAS of DEs, and online compute SAS 

together with numerical AE solution. 

– Pro. Simpler SAS

– Con: Performance relies on numerical AE solver. 

Analytical solution

,x = f(x,v)

( ( ) )( )t t=i vi x ,

Partitioned solution scheme 
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SAS Performances on IEEE 39-bus System

Transient Stability Simulation EMT Simulation



16

Performance of a Differential Transformation-based SAS (Polish 2383-bus system)

• Detailed models of generators, governors, turbines, exciters and ZIP loads

• Compare 3 methods (benchmark: TRAP-NR method with 0.1 ms time step)

– TRAP-NR method in a simultaneous scheme, time step of 1ms

– ME-NR method in a partitioned scheme, time step of 1ms

– DT-based SAS method: order 8 and time step of 10ms

• Higher efficiency & better accuracy

– Error is 1-2 orders lower, computation speed is 10x faster and the number 

of solved linear equations is reduced from 2000-3000 to 100.

Scenarios Methods
Error of state 

variables
(p.u.)

Error of bus 
voltages (p.u.)

Computation
time (s)

Stable
SAS 2.69×10-6 3.33×10-7 18.76

TRAR-NR 1.30×10-4 1.10×10-6 176.43
ME-NR 2.63×10-4 2.26×10-6 191.40

Unstable
SAS 1.89×10-6 2.78×10-7 18.85

TRAP-NR 1.41×10-4 1.61×10-6 182.76
ME-NR 2.79×10-4 2.93×10-6 196.02
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Variable-Step Optimal-Order Strategy (Polish 2383-bus System)

K. Huang, Y. Liu, K. Sun, F. Qiu, “PI-Controlled Variable Time-Step Power System Simulation Using an Adaptive Order Differential Transformation Method,” in revision 

• A variable-step optimal-order strategy enables 5x speedup by using a 25x longer stepsize.
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SAS Performance on EMT Simulation (IEEE 39-bus System)

M. Xiong, K. Huang, Y. Liu, R. Yao, K. Sun, F. Qiu, “A Semi-Analytical Approach for State-Space Electromagnetic Transient Simulation Using the Differential 

Transformation,”, submitted

• Semi-analytical EMT simulation achieves 5-20x speed up by using 10-100x longer stepsizes.
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Faster-Than-Real-Time Stability Assessment and Control (CURENT Hardware Testbed)

• Based on real-time state estimation, a SAS-based state predictor foresees 

instability in a next time window. 

• After a line trip on the California-Oregon Intertie (2-8), once the N-S angle 

separation (between G2 and G7) is predicted to reach a threshold, separate 

the system and stabilize frequencies by HVDC.

Reaching the threshold
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Stochastic Simulation with DERs and Stochastic Loads (IEEE 39-bus System)
S
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11.6 11.4

Euler-
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1165.1 1142.4

SAS 

(single run)
5.1 5.1

SAS 
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511. 0 503.6



21

Simulation with Motor Loads (NPCC 140-bus system)

Average 
stepsize

Time cost

Modified 
Euler

0.002 s 1150 s

SAS 0.196 s 12.09 s



22

Advantages of semi-analytical simulation

• May achieve 10-100x best time performance by a variable solution order and 

an adaptive step size.

• Promising for faster-than-real-time simulation stability assessment by 

shifting a majority of computation burdens to the offline stage

• Can be parallelized on high-performance computers thanks to the analytic 

nature of the SAS.

• Applicable to both deterministic and stochastic simulations.
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