Power System Simulation: From Numerical Methods to Semi-Analytical Methods

Kai Sun

Department of EECS University of Tennessee, Knoxville March 1st, 2024

<u>kaisun@utk.edu</u>

Content

- Background on power system simulation
- Ideas of semi-analytical solutions
- Introduction of semi-analytical methods and applications for power systems

POWER SYSTEM SIMULATION USING SEMI-ANALYTICAL METHODS

<section-header>

ISBN:978-1-119-98801-4

TRANSIENT STABILITY OF GENERATORS

Why dynamic simulation

- In designing and operating a power system, its dynamic performance subjected to disturbances such as condition changes and contingencies needs to be assessed.
- It is important that when the changes are completed, the system safely settles to a new operating condition.
- In other words, not only should the new operating condition be acceptable (as revealed by steady-state analysis) but also the system must survive the transition to the new condition without violating any constraint or reliability criteria. This requires dynamic simulation.

TIME

Industrial Practices in Power System Simulation

• Bulk power system model:

Differential-Algebraic-Equation (DAE) model:

$$\begin{cases} \dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, \mathbf{V}) \\ 0 = \mathbf{g}(\mathbf{x}, \mathbf{V}) = \mathbf{I}(\mathbf{x}, \mathbf{V}) - \mathbf{Y}_{N}\mathbf{V} \end{cases}$$

• Simulation methods:

- Numerical integration methods such as Euler, Runge-Kutta and Trapezoidal-rule methods.
- Linear or low-order approximation of nonlinear functions ${\bf f}$ and ${\bf g}$
- Slow due to small stepsizes (<1ms) for numerical stability or accuracy on large system models.

• Industry practices

- For one contingency, commercial software typically requires 1-5 minutes to simulate 1 second of a detailed grid model such as a 70,000-bus Eastern Interconnection model (5,000-10,000 generators and 100,000 state variables).
- Online simulations are performed on 1,000-3,000 critical contingencies every 10-15 min on a reduced model (~10,000 buses and 2,000 generators).

A partitioned (alternating) scheme solving power system DAEs

 $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, \mathbf{V})$ DE $\mathbf{I}(\mathbf{x}, \mathbf{V}) = \mathbf{Y}_{N}\mathbf{V}$ AE

• At each time step t_n :

Newton-Raphson method

Numerical Integration Methods

• Solving an initial value problem starting from $\mathbf{x}=\mathbf{x_0}$ and $t=t_0$

$$\frac{d\mathbf{x}}{dt} = f(\mathbf{x}, t) \quad \rightarrow \quad \Delta \mathbf{x} \approx f(\mathbf{x}, t) \Delta t$$

• Explicit Methods

 x is computed using only its past values, e.g. Forward Euler and R-K methods

Forward Euler method: $\mathbf{x}_{i+1} = \mathbf{x}_i + f(\mathbf{x}_i, t_i)\Delta t$

• Implicit Methods

- **x** is computed also involving its future values, e.g. the Backward Euler and Trapezoidal-rule methods Backward Euler method: $\mathbf{x}_{i+1} = \mathbf{x}_i + f(\mathbf{x}_{i+1}, t_{i+1})\Delta t$
- For stiff systems with large $|\lambda_{max}/\lambda_{min}|$, if Δt is too large the explicit methods have poor numerical stability while implicit methods have low accuracy

Comparison of Explicit and Implicit Methods

When focusing on the fastest dynamics:

$$\dot{x} = f(x,t) \approx \lambda_{\max} x$$

Forward Euler Method (explicit)

 $x_{i} = x_{i-1} + f(x_{i-1}, t_{i-1})\Delta t$ $\approx x_{i-1} + \lambda_{\max} x_{i-1}\Delta t$ $= x_{i-1}(1 + \lambda_{\max}\Delta t)$ $x_{i} = x_{0}(1 + \lambda_{\max}\Delta t)^{i}$

The method is numerically stabile if $|1 + \lambda_{\max} \Delta t| < 1$

 $\Rightarrow \lambda_{\max} \text{ has a negative real part and} \\ \Delta t < \frac{2}{|\lambda_{\max}|}$

Backward Euler Method (implicit)

$$x_{i} = x_{i-1} + f(x_{i}, t_{i})\Delta t$$

$$\approx x_{i-1} + \lambda_{\max} x_{i}\Delta t$$

$$x_{i} = x_{i-1} \frac{1}{1 - \lambda_{\max} \Delta t}$$

$$x_{i} = x_{0} \left(\frac{1}{1 - \lambda_{\max} \Delta t}\right)$$

 Δt can be arbitrarily large as long as λ_{max} has a negative real part (this method has **A-Stability**)

Finding an Analytical Solution of Nonlinear Differential Equations

$$\dot{\mathbf{x}}(t) = \mathbf{f}(\mathbf{x}(t))$$

$$\mathbf{x}(t) = \begin{bmatrix} x_{1}(t) & x_{2}(t) & \dots & x_{M}(t) \end{bmatrix}^{T}$$

$$\mathbf{f}(\cdot) = \begin{bmatrix} f_{1}(\cdot) & f_{2}(\cdot) & \dots & f_{M}(\cdot) \end{bmatrix}^{T}$$
Adomian Polynomials
$$f_{i}(\mathbf{x}) = \sum_{n=0}^{\infty} A_{i,n} = \sum_{n=0}^{\infty} \frac{1}{n!} \left[\frac{\partial^{n}}{\partial \lambda^{n}} f_{i} \left(\sum_{i=0}^{n} \mathbf{x}_{i} \lambda^{i} \right) \right]_{\lambda=0}$$

$$\mathbf{x}(t) = \mathbf{x}_{0}(t) + \mathbf{x}_{1}(t) + \mathbf{x}_{2}(t) + \dots$$

$$\mathbf{x}(t) = \sum_{n=0}^{\infty} \mathbf{x}_{n}(t),$$

$$\mathcal{D}[\mathbf{x}_{0}] = \mathbf{x}(0)/s \quad \mathcal{D}[\mathbf{x}_{n+1}] = \mathcal{D}[\mathbf{A}_{n}]/s \quad n \ge 0$$

Solving an SMIB System

$$\begin{cases} 2H \cdot \dot{\omega} = P_m - D \cdot (\omega - \omega_0) - P_e \\ \dot{\delta} = \omega \\ 0 = P_e - P_{\max} \sin \delta \end{cases}$$

 $\delta_0 = \beta t + \alpha$

Assume $\delta(0) = \alpha$ and $\omega(0) = \dot{\delta}(0) = \beta$ and solve: $\delta_{SAS}^{<3>}(t) = \delta_0(t) + \delta_1(t) + \delta_2(t)$

 $\delta_{1} = \frac{-D\beta + P_{m}}{t^{2}} t^{2} - \frac{P_{\max} \cos \alpha}{2 W c^{2}} t + \frac{P_{\max} [-\sin \alpha + \sin(\beta t + \alpha)]}{2 W c^{2}}$

$$\delta_{2} = \frac{D^{2}\beta - DP_{m}}{24H^{2}}t^{3} + \frac{D\beta(\cos\alpha - \cos(\beta t + \alpha)) + P_{m}\cos(\beta t + \alpha)}{8H^{2}\beta^{2}}P_{max}t^{2} + \frac{P_{max}[8D\beta(\sin\alpha + \sin(\beta t + \alpha)) - 4P_{m}(\sin\alpha + 2\sin(\beta t + \alpha)) - P_{max}(2\cos(\beta t + 2\alpha) + 2\cos\beta t + \cos 2\alpha + 4)]}{16H^{2}b^{3}}t - \frac{P_{max}[32D\beta(\cos\alpha - \cos(\beta t + \alpha)) - 24P_{m}(\cos\alpha - 2\cos(\beta t + \alpha)) - P_{max}(4\sin(\beta t + 2\alpha) + \sin 2(\beta t + \alpha) + 12\sin\beta t - 5\sin 2\alpha)]}{32H^{2}\beta^{4}}$$

Analytical Expansion

$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}), \quad t_0 = 0, \quad \mathbf{x}(0) = \mathbf{a}_0 \quad \overrightarrow{\mathbf{x}}_{SAS}^{}(t) \stackrel{\text{def}}{=} \mathbf{x}_0(t) + \mathbf{x}_1(t) + \mathbf{x}_2(t) + \dots + \mathbf{x}_K(t)$$
Assume $\mathbf{x}(t) = \mathbf{a}_0 + \mathbf{a}_1 t + \mathbf{a}_2 t^2 + \dots = \sum_{k=0}^{\infty} \mathbf{a}_k t^k \quad \overrightarrow{\mathbf{x}}_{SAS}^{}(t) \stackrel{\text{def}}{=} \mathbf{x}_0(t) + \mathbf{x}_1(t) + \mathbf{x}_2(t) + \dots + \mathbf{x}_K(t)$

$$\mathbf{f}(\mathbf{x}(t)) = \mathbf{f}\left(\sum_{k=0}^{\infty} \mathbf{a}_{k} t^{k}\right) = \sum_{k=0}^{\infty} \mathbf{b}_{k} t^{k} \qquad 0 + \mathbf{a}_{1} + 2\mathbf{a}_{2} t + 3\mathbf{a}_{3} t^{2} + \dots = \mathbf{b}_{0} + \mathbf{b}_{1} t + \mathbf{b}_{2} t^{2} + \dots \\ \mathbf{a}_{1} = \mathbf{b}_{0}(\mathbf{a}_{0}) \\ \mathbf{a}_{2} = \frac{1}{2} \mathbf{b}_{1}(\mathbf{a}_{0}, \mathbf{a}_{1}) \\ \mathbf{b}_{1} = \frac{1}{1!} \mathbf{J}_{\mathbf{f}}(\mathbf{a}_{0}) \mathbf{a}_{1} \qquad \Rightarrow \mathbf{a}_{3} = \frac{1}{2} \mathbf{b}_{1}(\mathbf{a}_{0}, \mathbf{a}_{1}) \\ \Rightarrow \mathbf{a}_{3} = \frac{1}{3} \mathbf{b}_{2}(\mathbf{a}_{0}, \mathbf{a}_{1}, \mathbf{a}_{2}) \\ \dots \\ \mathbf{b}_{2} = \frac{1}{2!} \left(\begin{bmatrix} \vdots \\ \mathbf{a}_{1}^{T} \mathbf{H}_{f_{i}}(\mathbf{a}_{0}) \mathbf{a}_{1} \\ \vdots \end{bmatrix} + 2\mathbf{J}_{\mathbf{f}}(\mathbf{a}_{0}) \mathbf{a}_{2} \right) \qquad \dots \\ \mathbf{a}_{K} = \frac{1}{K} \mathbf{b}_{K-1}(\mathbf{a}_{0}, \mathbf{a}_{1}, \dots, \mathbf{a}_{K-1})$$

A semi-analytical approach for time-domain simulation

• A semi-analytical solution (SAS) is an approximate but analytical solution of the DAE model.

Stage 1 (offline): Deriving the SAS with symbolic variables on time *t*, initial state \mathbf{x}_{ini} and selected parameters $\boldsymbol{\mu}$

Stage 2 (online): Evaluating the SAS over consecutive time intervals until finishing the simulation period.

Forms and Mathematical Tools for Semi-analytical Solutions

$$x_{SAS}(x_0, \mu, t) = \begin{cases} x = f(x, v) \\ 0 = g(x, v) \end{cases} \qquad x(0) = x_0 \end{cases}$$

$$\begin{aligned} & \text{Related works:} \\ \text{II N. Dan, K. Sun, "Power System Simulation Using the Multi-stage Adomian Decomposition," IEEE Trans. Power Systems, 2017 \\ \text{I2 C. Liu, B. Wang, K. Sun, "Fast Power System Dynamic Simulation Using Continued Fractions," IEEE Access, 2018 \\ \text{I3 B. Wang, N. Duan, K. Sun, "A Time-Power Series Based Semi-Analytical Approach for Power System Simulation," IEEE Trans. Power Systems, 2019 \\ \text{I3 B. Wang, N. Duan, K. Sun, "A Time-Power System Time Domain Simulation Using a Differential Transformation," IEEE Trans. Power Systems, 2019 \\ \text{I3 B. Wang, N. Duan, K. Sun, "A Time-Power System, 2019 \\ IA V. Lin, K. Sun, R. Yao, B. Wang, "Power System Comparison of Pade Approximation Using a Differential Transformation," IEEE Trans. Power Systems, 2019 \\ \text{I5 Y. Liu, K. Sun, F. Qiu, "Vectorized Efficient Computation of Pade Approximation for Semi-Analytical Simulation of Large-Scale Power Systems, 2019 \\ \text{I5 Y. Liu, K. Sun, et al, "Voltage Stability Analysis of Power Systems with Holuction Motors Based on Holomorphic Embodding," IEEE Trans. Power Systems, 2019 \\ \text{I7 R. Yao, K. Sun, et al, "Voltage Stability Analysis of Power Systems with Holuction Motors Based on Holomorphic Embodding," IEEE Trans. Power Systems, 2010 \\ \text{I8 R. Yao, Y. Liu, K. Sun, J. Dong, "A Dynamized Power Flow Method based on Differential Transformation," IEEE Trans. Power Systems, 2020 \\ \text{I9 Y. Liu, K. Sun, J. Dong, "A Dynamized Power Flow Method based on Differential Transformation," IEEE Trans. Power Systems, 2020 \\ \text{I9 P. Liu, K. Sun, et al, "EEE Trans. Power Systems, 2020 \\ \text{I9 P. Liu, K. Sun, et al, "EEE Trans. Power Systems, 2020 \\ \text{I9 P. Liu, K. Sun, et al, "EEE Trans. Power Systems, 2020 \\ \text{I9 P. Liu, K. Sun, et al, "EEE Trans. Power Systems, 2020 \\ \text{I9 P. Liu, K. Sun, et al, "EEE Trans. Power Systems, 2020 \\ \text{I9 P. Liu, K. Sun, et al, "EEE Trans. Power Systems, 2020 \\ \text{I9 P. Liu, K. Sun, et al, "EEE Trans. Power Systems,$$

Power System

Semi-analytical Simulation of a Large-scale Power Grid

Partitioned solution scheme

- **1-stage analytical strategy**: Find and compute SAS while simulating.
 - Pro: Minimum storage for symbolic SAS
 - Con: All online work
- **2-stage analytical strategy** (integrated scheme): Offline find SAS and online compute SAS.
 - Pro: Minimum online computation
 - Con: Needs storage for complex SAS if symbolizing many parameters.
- **2-stage analytical-numerical strategy** (partitioned scheme replacing numerical DE solver by SAS): Offline find SAS of DEs, and online compute SAS together with numerical AE solution.
 - Pro. Simpler SAS
 - Con: Performance relies on numerical AE solver.

SAS Performances on IEEE 39-bus System

EMT Simulation

Performance of a Differential Transformation-based SAS (Polish 2383-bus system)

- Detailed models of generators, governors, turbines, exciters and ZIP loads
- Compare 3 methods (benchmark: TRAP-NR method with 0.1 ms time step)
 - TRAP-NR method in a simultaneous scheme, time step of 1ms
 - ME-NR method in a partitioned scheme, time step of 1ms
 - DT-based SAS method: order 8 and time step of 10ms
- Higher efficiency & better accuracy
 - Error is 1-2 orders lower, computation speed is 10x faster and the number of solved linear equations is reduced from 2000-3000 to 100.

Scenarios	Methods	Error of state variables (p.u.)	Error of bus voltages (p.u.)	Computation time (s)	
	SAS	2.69×10 -6	3.33×10 ⁻⁷	18.76	
Stable	TRAR-NR	1.30×10 ⁻⁴	1.10×10 ⁻⁶	176.43	
	ME-NR	2.63×10 ⁻⁴	2.26×10 ⁻⁶	191.40	
	SAS	1.89×10 -6	2.78×10 ⁻⁷	18.85	
Unstable	TRAP-NR	1.41×10 ⁻⁴	1.61×10 ⁻⁶	182.76	
	ME-NR	2.79×10 ⁻⁴	2.93×10 ⁻⁶	196.02	

Variable-Step Optimal-Order Strategy (Polish 2383-bus System)

• A variable-step optimal-order strategy enables 5x speedup by using a 25x longer stepsize.

TABLE V Computational Time by Different Methods for 2383-bus Systems

	RK4	DT	VS-DT	VSOO-DT
CPU Time (s)	35.5284	9.4555	12.3074	6.4822
Averaged Step (ms)	0.5556	5	4.6889	13.6597
Averaged Order	—	8	8	12.1957

K. Huang, Y. Liu, K. Sun, F. Qiu, "PI-Controlled Variable Time-Step Power System Simulation Using an Adaptive Order Differential Transformation Method," in revision

SAS Performance on EMT Simulation (IEEE 39-bus System)

• Semi-analytical EMT simulation achieves 5-20x speed up by using 10-100x longer stepsizes.

COMPARING TIME STEPS AND TIME COSTS OF DIFFERENT METHODS								
	NDF (ode15s)		Runge-Kutta (ode45)		SAS (30 th -order)		Trapezoidal rule (ode23t)	
Case	Time step (μs)	Time cost (s)	Time step (μs)	Time cost (s)	Time step (μs)	Time cost (s)	Time step (µs)	Time cost (s)
Case 1	45.8	17.2	50.5	13.5	469	2.73	48.3	15.7
Case 2	46.2	17.4	50.3	13.6	464	2.71	48.6	15.5
Case 3	46.1	17.3	50.7	13.3	467	2.81	48.9	15.9

 TABLE III

 COMPARISON OF PERFORMANCE ON THE IEEE 39-BUS SYSTEM

 Approach
 PSCAD
 SAS

Approach		SAS			
Time step (µs)	5	50	75	100	467
Time cost (s)	56.2	5.62	3.75	2.81	2.71
Maximum error (pu)	1.10	5.52	6.11	5.95	7.7×10-3
Average error (×10 ⁻³ pu)	0.15	1.73	2.80	4.11	0.032

TABLE IV COMPARISON OF PERFORMANCE ON A 390-BUS SYSTEM						
Approach		SAS				
Time step (µs)	5	50	75	100	534	
Time cost (s)	425	42.5	28.3	21.5	98	
Maximum error (pu)	0.22	2.58	3.36	3.85	7×10 ⁻⁴	
Average error (×10 ⁻³ pu)	0.41	2.61	2.91	3.3	0.0012	

M. Xiong, K. Huang, Y. Liu, R. Yao, K. Sun, F. Qiu, "A Semi-Analytical Approach for State-Space Electromagnetic Transient Simulation Using the Differential Transformation,", submitted

Faster-Than-Real-Time Stability Assessment and Control (CURENT Hardware Testbed)

- Based on real-time state estimation, a SAS-based state predictor foresees instability in a next time window.
- After a line trip on the California-Oregon Intertie (2-8), once the N-S angle separation (between G2 and G7) is predicted to reach a threshold, separate the system and stabilize frequencies by HVDC.

2

0

3

time (s)

5

Stochastic Simulation with DERs and Stochastic Loads (IEEE 39-bus System)

Simulation with Motor Loads (NPCC 140-bus system)

Advantages of semi-analytical simulation

- May achieve 10-100x best time performance by a variable solution order and an adaptive step size.
- Promising for faster-than-real-time simulation stability assessment by shifting a majority of computation burdens to the offline stage
- Can be parallelized on high-performance computers thanks to the analytic nature of the SAS.
- Applicable to both deterministic and stochastic simulations.