

Power Electronics for Grid Applications

Fred Wang, UTK/ORNL

fred.wang@utk.edu

March 8, 2024

Traditional Power Grid Equipment

- Sources rotating synchronous generators etc.
- T&D lines & cables, transformers, switchgear, series/shunt capacitor/reactor compensators etc.
- Loads motors, lighting, thermal loads, etc.
- Limited power electronics

Residential

Customers

•

Commercial &

Industrial Users

Power Transfer in Grid - From "AC vs DC" to "AC and DC"

Power Electronics for AC Transmission – Flexible AC Transmission Systems (FACTS)

Series connected compensators

Thyristor-controlled series compensator (TCSC)

Interphase power controller (IPC)

Static synchronous compensator (STATCOM)

Shunt connected compensators

Thyristor-switched capacitor (TSC)

Thyristor-switched reactor (TSC)

Static var

compensator (SVC)

Static synchronous compensator (STATCOM)

Series and shunt connected compensators

Thyristor-controlled phase CURENT shifting transformer (TCPST)

Unified power flow controller (UPFC)

Conventional FACTS mostly based on Si thyristor technology, with limited performance and capabilities

Power Electronics for AC Distribution – Custom Power

Power flow control and interruption

Solid-state transfer switch (SSTS) Solid-state circuit breaker (SSCB) Solid-state fault current limiter (SSFCL)

Power system conditioning and compensation

Distribution static synchronous compensator (DSTATCOM) Static var compensator (SVC)

Dynamic voltage restorer (DVR)

Thyristor-controlled voltage regulator (TCVR)

Power quality enhancement

Unified power quality conditioner (UPQC)

Active power filter (APF)

Power Electronics for T&D – More Recent Development

Solid-state transformer

Distributed static series compensator

Controllable network transformer

Continuously variable series reactor

(CVSR)

Grid Power Electronics – Sources and Loads

• Renewable energy source interface

• Energy storage systems

• Power electronic loads: data center, EV charging station, large motor drive

Microgrids

AC and DC Transmission Principles

 $P = \frac{U_{d1} (U_{d1} - U_{d2})}{R}$

Compared with AC, the main features of DC transmissions:

- Long distance
- Asynchronous interconnection
- Controllability

DC does require AC/DC converters and other associated equipment

- Filters and var compensators
- Communications
- Special transformers

HVDC vs. HVAC Cost

- There is a breakeven or critical distance beyond which the DC scheme will be more economical
- The breakeven distance depends on many factors. For overhead lines in the range of several hundred of miles (300 to 500); for cables, in the range of tens of miles (30 to 60 miles)

HVDC Converter – Principle of Load Commutated Converter (LCC)

Six Pulse LCC Converter Bridge and Its Operation

HVDC Converter – Principles of Voltage Source Converter (VSC)

HVDC Technology Development

HVDC Technology Evolution: Voltage Source Converter (VSC) Topologies

- VSC based on switching devices (IGBT/IGCT), with better performance than thyristor based LCC, and significantly reduced converter station footprint and less right-of-way
- MMC latest generation of VSC topology: low loss, and no series devices

MMC VSC vs. Conventional VSC

Technology Evolution – VSC Efficiency

- Generations 1-3 adopt the two-level converter and 3-level converter
- Generation 4 adopts MMC, and the converter efficiency is comparable to LCC HVDC

HVDC System Types

Point-to-point transmission

• Back-to-back system

Multi-terminal system

HVDC more economical for long-distance transmission; HVDC can decouple dynamics of AC systems, benefiting system stability and protection

Summary of HVDC Benefits

- Long distance bulk power transmission
- Asynchronous interconnections
- Lower cost for cable transmission (subsea, offshore)
- AC system support
 - Controllability (including damping, f support, power flow and voltage control)
 - Limitation of faults
 - > Low short-circuit current contribution
- Better use of right-of-way
- Environmental benefits (corona, noise, etc.)

Better Use of Right-of-Way

Based on information from ABB

Several aspects on this point:

- For the same power transmitted, HVDC requires less right-of-way
- For the same right-of-theway, HVDC can transfer more power
- With the same lines, HVDC can have lower loss

Disadvantages and Issues with HVDC

- High cost and complex converters
- Converters generate harmonics
- LCC HVDC require large var compensation and filters
- Challenges on grounding electrodes and converter transformers
- Difficulty of breaking DC current (DC breaker)

VSC HVDC Protection – Challenge

- VSC is vulnerable to DC side short circuit fault, as the fault current can still flow through the diode after IGBT switches turned off
- DC current is difficult to clear without zero-crossing

- State of art solution: AC breaker + bypass thyristor (if necessary)
- 100 ms to clear the fault, and 2 s to restart the system

Fast fault clearance solution (<5 ms)
Siemens method: MMC with fault blocking sub-module

• Fast fault clearance solution (<5 ms)

♦ GE/Alstom method: hybrid MMC

- Fast fault clearance solution (<5 ms)
 - Hitachi/ABB method: Hybrid DC breaker

Hybrid AC/DC System

Objective: Upgrade existing AC lines to hybrid AC and DC lines, to expand the power transmission capability

Basic Concept of Hybrid AC/DC System

Benefits and Issues

Benefits:

• A lower cost solution for increased power transfer and improved stability

Issues:

- Zigzag transformer may be saturated with unbalanced AC line resistance, due to the uncanceled DC flux within zigzag windings.
- Neutral point of zigzag transformer needs extra insulation to withstand dc bias voltage

Method 1: Design Tolerance Margin

Method 1: DC tolerance design

- > Can tolerate a certain unbalance range $(\pm\beta)$
- > To tolerate more unbalance will cause more power loss and/or VAR loss
- > Effective AC flux density is reduced, lead to higher cost

Method 2: Adjust Transformer Turns

Method 2: DC flux cancelation design by adjusting turns

- Less power or VAR loss compared to method1 for the same rating \geq
- Cost closest to normal AC transformer. \geq
- Introduces a certain extra voltage unbalance \geq
- Sensitive to real-time unbalance

Method3: Active Unbalance Mitigation

Method 3: Hybrid line balance control

- Immunity to unbalance
- > Low voltage rating, no insulation issue
- Active impedance with low loss
- > With extra converter cost, but low compared to main HVDC converters

Hybrid line impedance conditioner:

Bidirectional Active Hybrid Line Impedance Conditioners (Two conditioners are active, at the most)

Adjust the line resistance by phase.

Can be enabled or bypassed

 $\Delta R = \frac{V_{AC/DC}}{I_{AC/DC}} \approx \frac{\Delta V_{DC}}{I_{DC}/2}$

Method3: Impedance Conditioner Design and

Simulation_

32

System Parameters		
Line Length	650km	
Impedance	0.035Ohm/km+ 0.9337mH/km	
Unbalance	5%	
Line voltage (phase)	AC: 115 kV; DC 180 kV	
Line current	AC: 612A, DC: 1000A	
Transmission Power	729 MW (189 AC and 540 DC)	
Inverter AC voltage	3.183kV(peak)	
DC link voltage	3.617kV	
DC link Capacitance	3300uF	
Rectifier AC voltage	3.183 kV(peak)	
Zigzag transformer windings	balance design + conditioner winding (170/138/138/3)	

REN'

Conditioner enabled at 0.6s. Control reference goes from zero to the desired impedance.

Scaled Hybrid AC/DC System Prototype

Scaled Hybrid AC/DC System Experiments

BTB AC grid voltage: 80V Rectifier: $V_{DC_{ref}} = 150V$, $Q_{ref} = 0var$ SURENT AC line voltage: 104V

Inverter: $I_{DC} = 12A$, $Q_{ref} = 0var$

HTB 3-Area Structure – NPCC Representation

 <u>Emulate various grid scenarios</u> with interconnected clusters of scaled-down generators, loads, and energy storage.

HTB 4-Area Structure – WECC Representation

Four-area WECC system including multi-terminal HVDC, high penetration of renewable FENNESSE

Multi-Terminal HVDC Testbed

Objective: Build a hardware platform for MT-HVDC system operation/control/protection development and demonstration

System Structure

Testbed Capability on Scenario Emulation:

- System start-up
- Station online re-commission
- Wind farm power variation
- Station outage
- Transmission line trip
- Station online mode transition

MTDC Testbed Hardware

Acknowledgements

Other government and industry sponsors are also acknowledged.

Thank You!

