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Abstract  
 
On-line dynamic security assessment (DSA) is challenging using conventional techniques 
because most DSA approaches use detailed mathematical models of the system that are 
computationally intensive and time-consuming. In this paper, a method based on Artificial 
Neural Networks (ANN) is developed to estimate the security margin. The security margin 
for a given power system is obtained by applying standard operations criteria for transient 
response to off-line time simulations. These simulations then form a database that can be 
used to train a pattern matching approach, such as, ANNs. Feature selection using 
statistical approaches is applied to overcome the dimensional problem of applying the 
ANN to larger systems. This method provides a fast and accurate tool to evaluate dynamic 
security. If the estimated security margin is less than requirements, then preventive control 
actions that guarantee dynamic security of the power system are needed. This is achieved 
by optimal rescheduling of the generation with given constraints on the network power 
flows and system security margins as estimated by the ANN. This requires a modified 
Optimal Power Flow (OPF) solution that allows the trained ANN to act as a security 
objective function. Numerical results on the New England 39-bus system validate the 
methodology.  
 
1. Introduction 
 
Modern power systems are large and complex systems operated under great economic 
pressures in the new competitive and deregulation environment. These pressures have 
forced power systems to be operated closer to security limits, limits that may not be well 
understood. Consequently, as evidenced by the recent spate of blackouts, power system 
security has become a major concern. Power System security is the ability of system to 
withstand sudden disturbances with minimum disruption to the quality of service. 
Examples of such disturbances are electric short circuit, change of transmission system 
configurations due to faults, loss of system components, line switching actions, or sudden 
load increase. For proper planning and operation, it means that after the disturbance 
occurs, the power system must meet two requirements: (1) surviving the ensuing transient 
and moving into an acceptable steady-state condition, and (2) in this new steady-state 
condition all components are operating within established limits [1]. The analysis used for 
the first requirement is Dynamic Security Assessment (DSA). The second requirement is 
known as Static Security Assessment (SSA). Several techniques are now available to 
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perform quickly and reliably SSA; however, DSA methods are still not fully developed 
and available. 
 
DSA is comprised of both Transient Stability Assessment (TSA) including adequate 
damping and Voltage Security Assessment (VSA). TSA is a major concern in the 
assessment of multi-machine power systems. In particular, a fault or loss of a large 
generator can give rise to large electromechanical oscillations between generating units, 
which might lead to loss of synchronism in the system. VSA is associated with the 
increased loading of long transmission lines and insufficient local reactive power supply. 
These types of phenomena are characterized by a voltage drop gradual initially, and then 
subsequently a collapse. This paper focuses on transient stability.  
 
The objectives of TSA are to assess the transient stability of a power system subject to a 
set of pre-defined contingencies, and to provide the operators with efficient control 
measures to assure the system transient stability while maintaining economic operation. 
TSA conventional techniques include direct methods, such as transient energy function 
(TEF) [2] and extended equal area criteria (EEAC) [3], and indirect methods using time 
domain simulation [4]. Direct methods have drawn much attention in the past since these 
methods can provide stability indices and have low computational requirements. Still, 
these methods require significant approximations that limit the modeling complexity. As a 
result, it is difficult to construct a reliable index. On the other hand, time domain 
simulation provides the most accurate approach for determining the transient stability of 
the system. This method allows flexible modeling of components. Still, time domain 
simulation is computationally intensive and not suitable for on-line application.  
 
To overcome such shortcomings, pattern-matching methods have been proposed. These 
methods are driven by a large database of examples from the off-line studies. Among such 
approaches, the Artificial Neural Network (ANN) has been frequently proposed as since it 
possesses certain attractive features, including excellent generalization capabilities, 
superior noise rejection, and fast execution (most of the calculation occurs during the 
initial off-line training). The underlying principle consists of extracting the main off-line 
study information derived from time domain simulation, and organizing it into a neural 
network. This enables one to infer knowledge about new cases. It avoids cumbersome 
transient stability computations on-line, and allows transient stability assessment to be 
performed in a very short time. Several researchers have been pursuing improving the 
methodology for use as a reliable tool of on-line DSA [5-7].  
 
As the system operating state changes throughout the day, DSA should be constantly in 
operation to detect when the security level falls below an acceptable level. In this 
situation, it is important for the system operators to make proper preventive measures to 
ensure the system returns to a secure state. Preventive control actions include generation 
rescheduling, network switching, reactive compensation and load curtailment. Generation 
rescheduling to improve transient stability has been explored for decades. In [3, 8-9], 
direct methods are proposed, where the sensitivities of the stability margin with respect to 
the change in control parameters, such as generator output, are used as guidance to select 
control measures. The concept of coherency was introduced in [10-11] as a measure for 
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the redispatch. In [12-13] optimization techniques are combined with the TEF to 
determine optimal rescheduling. In [14], the stability constraints are included in the 
optimal power flow (OPF) by converting the differential equation constraints into 
equivalent algebraic constraints. Pattern recognition and neural networks have also been 
used for preventive control schemes [15-16]. The transient stability functions, which are 
acquired by pattern recognition or neural network techniques, are applied as constraints of 
an optimization problem.  
 
In this paper, a method based on ANNs is used to estimate the security margin. The 
security margin, i.e., the distance between the current operating point and the security 
limit, for a given power system is obtained by applying standard operations criteria for 
transient response to off-line time simulations. These simulations then form a database that 
can be used to train the ANN. Feature selection using statistical approaches is applied to 
overcome the dimensional problem of applying the ANN to larger systems. If the 
estimated security margin is less than requirements, then preventive control actions that 
assure dynamic security of the power system are needed. This is achieved by rescheduling 
the generation with the given constraints on the network power flows and the system 
security margins as estimated by the ANN. This requires a modified OPF solution that 
allows the trained ANN to act as a security objective function.  
 
2. Problem formulation 
 
Power system security assessment can be divided in to two categories: classification and 
margin determination. Classification determines whether the system is secure or insecure 
for all pre-specified contingencies. Classification does not in itself indicate the distance 
from the operating condition to the insecure conditions. Security margin determination, on 
the other hand, involves finding this distance. Safe operating levels based on various 
system conditions are given in terms of a critical system operating parameter, e. g., 
loading of a certain power plant, the power flow at critical transmission interface, the 
voltage at given bus, and so on. In this paper, the power system security margin in 
response to all predefined contingencies is investigated for a given pre-contingency steady 
state of the system. The loading is varied to determine the security margin regarding the 
frequency deviation. The allowable margins and associate reliability criteria are based on 
the regional council (WECC) guidelines [17]. 
 
2.1 ANN for Stability Margin Assessment 
 
Generally, pattern-matching approaches consist of data (training set) generation, feature 
selection, training process, and performance evaluation. Our focus here is on estimation of 
the loading margin (P margin) regarding transient frequency criteria. The frequency 
should not drop below 59.6 Hz for 6 cycles or more at a load bus. Note that the amount of 
additional load of a particular operating point that would violate the frequency criteria is 
called the loading margin to frequency deviation. The active and reactive power flow of all 
lines is used as the features in order to describe a system state. The ANN is trained using 
the data of the off-line operational studies. 
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2.1.1 Neuron network design 
 
A feed-forward multi-layer ANN based on Levenberg-Marquardt and Bayesian Regulation 
backpropagation is chosen [18]. It includes three layers, one for the input, one for the 
hidden, and one for the output. The size of input is identified by the size of the input 
pattern. Similarly, the size of the output layer is determined by the number of the outputs. 
There is no exact criterion either for the number of hidden layers or for the number of 
neurons per hidden layer. Too many neurons can lead to memorization of the training data 
with the danger of losing the ability to generalize and predict. Data or training sets have to 
be representative of the different states of the power system because ANNs are good in 
interpolation but not extrapolation. This means that they need to cover the complete 
pattern space. Note that the routines from MATLAB neural network toolbox [19] are used. 
 
2.1.2 Data generation 
 
The training set is generated by considering several load levels and different generation 
unit patterns for a particular contingency. To determine the transient stability transfer 
limits or loading margins, a load-flow software package (IPFLOW [20]) is first executed 
for the given topology to find a satisfactory steady-state case. This steady-state case is then 
applied to initialize the network for a transient-stability simulation program (ETMSP 
[21]). When the simulation is finished, reliability criteria are applied to the results from 
ETMSP. The load and generation are modified accordingly and then the process iterated. 
This is repeated till the highest stable transfer level for an interface is found. In general, to 
find the security limit, the process must be repeated for different contingency types and 
location until the most constraining (i.e., lowest) transfer limit has been identified. Note 
that, in this paper, only one network topology is analyzed.   
 
2.1.3 Feature selection 
 
This stage can be considered a pre-processing step. This is an extremely important step, as 
selected features should characterize properly a variety of power system operating 
conditions. Generally, the dimension of the pattern vector is very large. The process of 
finding the most significant variables, eliminating redundancy and reducing the dimension 
of the pattern vector is called feature selection. Different methods based on statistical 
approaches are available for feature extraction (i.e., reducing the dimension of the input 
data vector). Here, parameters that may be applied to describe a system state are as 
follows: 
 

- voltage magnitude and phase angle at each system bus, 
- active and reactive power of each bus load, 
- active and reactive power flow of all the lines, 
- active and reactive power output of each generator plant. 

 
The selection and extraction process should involve both engineering judgment and 
statistical analysis. The statistical approaches applied in the study are principal 
components analysis (also called Karhunen-Loeve expansion) and correlation coefficients 
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[18]. First, the principal component analysis method determines the eigenvectors 
corresponding to the largest eigenvalues of the auto-correlation matrix of training vectors 
as its principal components. The reduced training vectors are selected in direction of the 
most dominant eigenvectors. Subsequently, the correlation coefficients between the 
selected features and the computed security margin are determined for further reduction of 
input vector dimension. The ANN is then trained with this new set of reduced vectors. 
This extraction closely relates to the performance of a neural network and computation 
time since the fewer the number of features, the fewer samples required.   
 
2.1.4 Splitting training data for estimation and validation 
 
One of the simplest and most widely used means of avoiding overfitting, which can occur 
when training ANNs, is to divide the training data into two sets: an estimation set and a 
validation set. The optimum ratio ropt that determines the split of the training data between 
estimation and validation sets is defined by 
 

)1(2
1121

−
−−

−=
W

Wropt      (1) 

 
where ropt is the estimation portion, W is the number of free parameters in the network with 
N < W, and N is the size of the training set [22]. 
 
2.2 Optimization Formulation for Preventive Rescheduling 
 
Generation rescheduling is formulated as a constrained optimization problem as follows: 
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where ( )⋅f  is the trained ANN function, which maps the power flows of selected lines 
(resulting from the feature extraction) to the security margin, and gP  is the vector of active 

power generation output with upper bound gP  and lower bound gP . Since ( )⋅f  does not 

map gP  to the security margin directly, gP  is converted to line flows through (3) and (4), 
which are the active and reactive power flow equations respectively, and then line flows 
are extracted appropriately for the trained ANN function. Equation (5) is the load balance 
constraint where Ng is the number of generator buses; 

igP is the ith element of gP ; 0
igP  is 

the ith element of 0
gP , a vector representing the generation before the rescheduling. gQ  is 

the vector of reactive power generation output with upper bound gQ  and lower bound 

gQ , ),( θVP  and ),( θVQ  are vectors of real and reactive power injections, and V  and θ  

are vectors of bus voltage magnitudes and angles with upper limit V and lower limit V . 
Note that the objective function in this formulation does not have an analytical expression. 
So the search for maxima relies entirely on functional evaluations. In this paper, an 
optimization routine, based on Sequential Quadratic Programming method from 
MATLAB optimization toolbox [23], is applied. 
 
2.3. Summary of Approach    

 
The proposed approach includes the transient stability assessment based on ANN and the 
preventive rescheduling. The procedures are as follows: 
 

1. Evaluate the worst case regarding to security margin (i.e., lowest margin) using the 
trained ANN by considering all pre-specified contingencies, e.g., three phase faults 
on branches of a power system network. 

2. If the security margin of the worst case is below an unacceptable level, then the 
preventive rescheduling optimization in section 2.2 is exercised to improve that 
security margin.  

3. The rescheduling is then checked with a full analysis of the security margin to 
verify the margin estimate. 

 
3. Numerical example 
 
3.1 Example of Security Margin Estimation 
 
To illustrate the proposed approach, the 39-bus New England test system is chosen. The 
system is divided into two zones, a load center with only load buses including buses 17, 
18, and 27 with three tie lines 3-18, 16-17, and 26-27 as shown in Figure 1. The other zone 
contains all the remaining load and generation buses. The focus of the study here is the 
power flow at the interface of this load center. 
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Pattern 
number 

Unit 
30 

(MW) 

Unit 
31 

(MW) 

Unit 
32 

(MW) 

Unit 
33 

(MW) 

Unit 
34 

(MW) 

Unit 
35 

(MW) 

Unit 
36 

(MW) 

Unit 
37 

(MW) 

Unit 
38 

(MW) 

Unit 
39 

(MW) 
1 250.0 573.66 650.0   632.0 508.0 650.0 560.0 540.0 830.0 1000.0 
2 308.6 583.9 655.2 599.8 462.5 646.4 565.8 555.1 808.3 1008.0 
3 256.8 531.2 830.72 599.2 472.0 839.20 482.15 663.0 719.38 800.0 
4 288.9 597.6 696.46 599.2 472.0 710.4 524.88 524.88 829.35 950.0 
5 347.56 597.6 674.1 599.2 472.0 674.1 524.88 524.88 829.35 950.0 
6 363.69 579.67 653.88 581.22 607.7 653.88 509.13 509.13 804.47 930.89 
7 280.2 579.7 653.9 581.2 607.7 653.9 509.1 509.1 804.5 1014.4 
8 312.2 579.7 653.9 613.7 532.1 653.9 509.1 509.1 830.0 1000.0 
9 280.23 579.67 653.88 623.74 554.00 653.88 509.13 509.13 830 1000.0 

10 274.5 573.7 640.4 632.0 573.5 640.4 498.6 530.6 830.0 1000.0 
11 274.5 573.7 640.4 632.0 583.5 640.4 498.6 520.6 830.0 1000.0 
12 280.2 579.7 653.9 632.0 554.0 653.9 509.1 509.1 821.7 1000.0 
13 319.2 579.7 653.9 608.7 525.1 653.9 509.1 514.1 830.0 1000.0 
14 324.2 579.7 653.9 606.7 520.1 653.9 509.1 516.1 830.0 1000.0 
15 334.2 579.7 653.9 606.7 515.1 646.9 499.1 523.1 835.0 1000.0 
16 344.2 579.7 653.9 606.7 510.1 639.9 489.1 530.1 840.0 1000.0 
17 354.2 579.7 653.9 606.7 505.1 632.9 479.1 537.1 845.0 1000.0 
18 364.2 579.7 653.9 606.7 500.1 625.9 469.1 544.1 850.0 1000.0 
19 374.2 584.7 653.9 601.7 492.1 618.9 459.1 552.1 857.0 1000.0 
20 384.2 589.7 653.9 596.7 484.1 611.9 449.1 560.1 864.0 1000.0 

 
Table 1. The generation schedule used to obtain training set 

 
The P margin is decided by increasing the active power of the load center step by step 
over the base case until there is a violation to the reliability criteria (in this study either 
frequency excursion or inadequate damping). The smallest step used is 25 MW, and the 
total load for the base case is 6000 MW. The generator schedules used in obtaining the 

Load 
center 

Figure 1. New England test system 
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training set are given in Table 1. The entire data set consists of 1042 samples with 20% for 
testing and 30% for validation. The training and testing data are obtained from transient 
stability studies using commercial software packages, i.e., IPFLOW and ETMSP. 
Contingencies considered are three-phase faults on each line with the fault cleared in three 
cycles (0.05 seconds) by removal of the line. For each load level, there are 32 cases 
representing one base case and 31 (n-1) contingencies. 
    

 
Table 2. Security assessment result of the 39-bus system 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Margin estimator performance on the 39-bus system 
 
 
Initially, there are 96 total features, i.e., the active and reactive power flow of all the lines. 
These reduce to 34 features using principal components analysis.  Here, statistical 
correlation coefficients were exploited to further reduce the dimension of the pattern 
vector to 17 elements. An ANN with 25 neurons in the single hidden layer was 
implemented using Levenberg-Marquardt and Bayesian Regulation backpropagation. 
From the results shown in Table 2 and Figure 2, the estimated security margin agrees with 

Training 
Method 

Max error 
(MW/%) 

Min error 
(MW/%) 

Mean 
error 

(MW/%) 

Mean 
Square error 

(MW 2 ) 

Standard 
Deviation 

(MW) 

Number 
of hidden 
neurons 

Levenberg-
Marquardt 

7.4043, 
4.2811% 

0.0003 
0.00006% 

0.6850 
0.2622% 

1.3102 1.1036 25 

Bayesian 
Regulation 

5.5207 
7.3437% 

0.0010 
0.0005% 

0.5878 
0.2683% 

0.6710 0.8193 25 

 



 1-9

the results computed by the transient simulation program, and the performances of these 
two backpropagation methods are similar.  
 
3.2 Example of Generation Rescheduling 
 
To demonstrate the preventive rescheduling part, suppose that the security margin of base 
case must be improved. In the base case, the P margin of the worst case is 425 MW with 
three-phase fault on branch from bus 21 to 22. The rescheduling measure is applied using 
a heuristic method (as a means of comparison) and the proposed optimization method. The 
scheme of heuristic approach is based on the size of the frequency excursions of the 
generation units following the limiting contingencies. Those units with larger deviations 
will have their power outputs decreased, and that decreased amount of power output will 
be allocated to other units, which have relatively smaller deviations. In the optimization 
approach, two cases are considered regarding the generation schedule used in obtaining 
the training set. The generation schedules applied for optimization case I and case II are 
pattern numbers 1-10 and pattern numbers 1-20, respectively, shown in Table 1. The 
results are shown in Table 3. 
 
  
Gen. unit no. Base case gen. 

(MW) 
Rescheduling using 

heuristic method 
(MW) 

Rescheduling using 
optimization case I 

(MW) 

Rescheduling using 
optimization case II 

(MW) 
30 250.00 308.6     385.2     385.20     
31 573.66   583.9     531.2     564.94   
32 650.00   655.2       651.6     655.98  
33 632.00   599.8     599.2     599.20     
34 508.00   462.5     528.1     472.0     
35 650.00   646.4      642.7    665.78  
36 560.00   565.8      447.5     447.53     
37 540.00   555.1      552.5     552.50 
38 830.00 808.3       855.5     855.54 
39 1000.00 1008.0 1000.0 995.00 

Estimated P 
margin (MW) 

- - 801.38 964.16 

Actual P 
margin (MW) 

425 500 800 875 

Worst case Branch 21-22 Branch 21-22 Branch 16-17 Branch 16-17 
 

Table 3. Generation rescheduling results of the 39-bus system 
 
Note that, in Table 3, actual P margin refers to the power margin acquired using transient 
stability program (time domain simulation), and estimated P margin is the power margin 
obtained directly from the optimization. The results show that all methods can improve the 
stability margin of the base case, and the better ones result from the proposed optimization 
approach.  From the results shown in Table 3, although there is a mismatch between actual 
margin, and estimated margin but the generation power output according to estimated 
margin does give a direction how to redispatch the generation units in order to improve the 
stability limit. 
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4. Conclusions 
 
The estimated results obtained from ANN show that this technique is able to predict the 
security margin with a reasonable degree of accuracy. Prediction and generalization 
capabilities of these NNs provide a flexible mapping of input attributes to the single-
valued space of the security margin. Since ANNs have high computation rates, parallel 
distributed processing, fault tolerance, and adaptive capability, they are an excellent 
alternative for real-time application.  The ANN-based margin estimator can then be used 
to drive a preventive rescheduling scheme. The important point for this approach is that 
the estimator must be trained with appropriately dispatch patterns to not only estimate the 
margins but to cover different generation patterns. The numerical results for the test 
systems have shown that the technique improves the stability margin of the system for the 
set of contingencies. Still, research is required to make the algorithm more robust and 
general.  
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