Desk Copy

ECE 300 Spring Semester, 2007 Test #2

wlg Test A

Name Print (last first)

Work the exam on your own engineering paper. Work on one side of your paper only. Attach your work to the back of this exam sheet and staple in the top left hand corner. Each problem percentage credit is indicated out beside the problem.

(1) You are given the circuit of Figure 1.

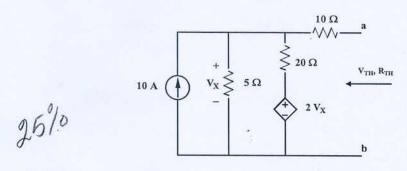


Figure 1: Circuit for problem 1.

- (a) Determine the short-circuit current, that is, the current flowing through a wire with zero ohms connected between a-b.
- (b) Determine the open-circuit voltage, that is, the voltage between terminals a-b with the short removed.
- (c) Determine V_{TH} (Thevenin's voltage) and R_{TH} (Thevenin's resistance) looking into a-b.
- (d) Draw your Thevenin circuit showing V_{TH} and R_{TH} and terminals a-b.
- (2) You are given the op-amp configuration shown below. Determine V_0 .

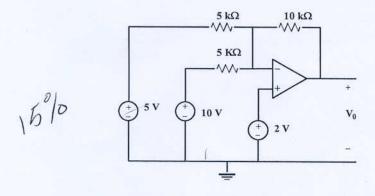


Figure 2: Problem for problem 2.

- (3) You are given the circuit of Figure 3.
 - (a) Find the Norton equivalent circuit with respect to terminals a-b. You are required to find I_{NORTON} by actually finding the short circuit current.
 - (b) Draw your Norton equivalent circuit showing the I_{NORTON}, R_{TH} and terminals a-b.

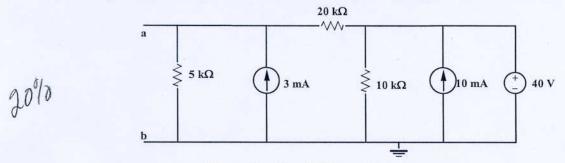


Figure 3: Circuit for problem 3.

- (4) You are given the circuit of Figure 4.
 - (a) Find the Thevenin equivalent circuit to the left of A-B. Draw the circuit.
 - (b) Find the value of R_L for maximum power transfer to R_L .
 - (c) What is the value of the power delivered to R_L when it has the value found in (b)?

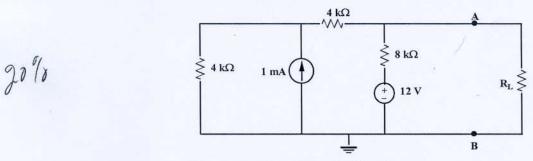


Figure 4: Circuit for problem 4.

- (5) Consider the circuit shown in Figure 5. The switch is closed at t = 0 and has been closed long enough for the circuit to reach steady state; that is, all currents and voltages in the circuit have reached constant values. C₁ and R are unknown. Under these conditions determine the
 - (a) currents I₁ and I₂,
 - (b) the capacitor voltage V_c,
 - (c) the energy stored in the 4μF capacitor.

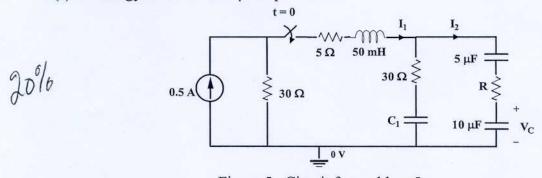


Figure 5: Circuit for problem 5.

(1) You are given the circuit of Figure 1.

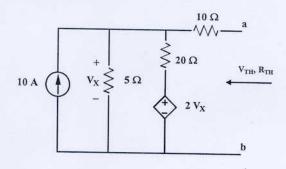


Figure 1: Circuit for problem 1.

- (a) Determine the short-circuit current, that is, the current flowing through a wire with zero ohms connected between a-b.
- (b) Determine the open-circuit voltage, that is, the voltage between terminals a-b with the short removed.
- (c) Determine V_{TH} (Thevenin's voltage) and R_{TH} (Thevenin's resistance) looking into a-b.

With the terminals A-b shorter

VA 1050

A 1050

A 1050

A 2050

VISC

V

Using nodal ANAlysis At A: $\frac{V_A}{5} + \frac{V_A - 2V_X}{20} + \frac{V_A}{10} = 10$ $4V_A + V_A - 2V_X + 2V_A = 200$ but $V_X = V_A$ $Clearing Above: 5V_A = 200$ $V_A = 40V$

3

b) cont.

FIND Voc

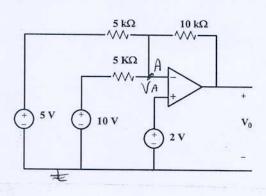
10A D Vx 352 Voc

Note that Vx = Voc; lesing nodel

 $\frac{1/x}{5} + \frac{1/x - 21/x}{20} = 10$

 $4v_X - v_X = 200$

1/x = 200 = We


(c) $V_{TH} = \left(\frac{200}{3}\right)V = 66.67V$

PTH = VIH = 200 = 16,6752

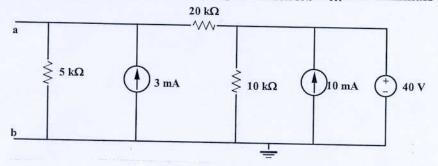
RTH = 16,67-2

16.67 ×

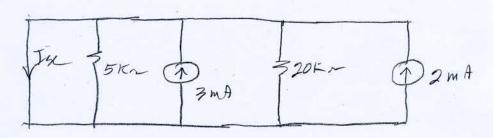
(2) You are given the op-amp configuration shown below. Determine V_0 .

At A
$$V_{A} = 2V$$

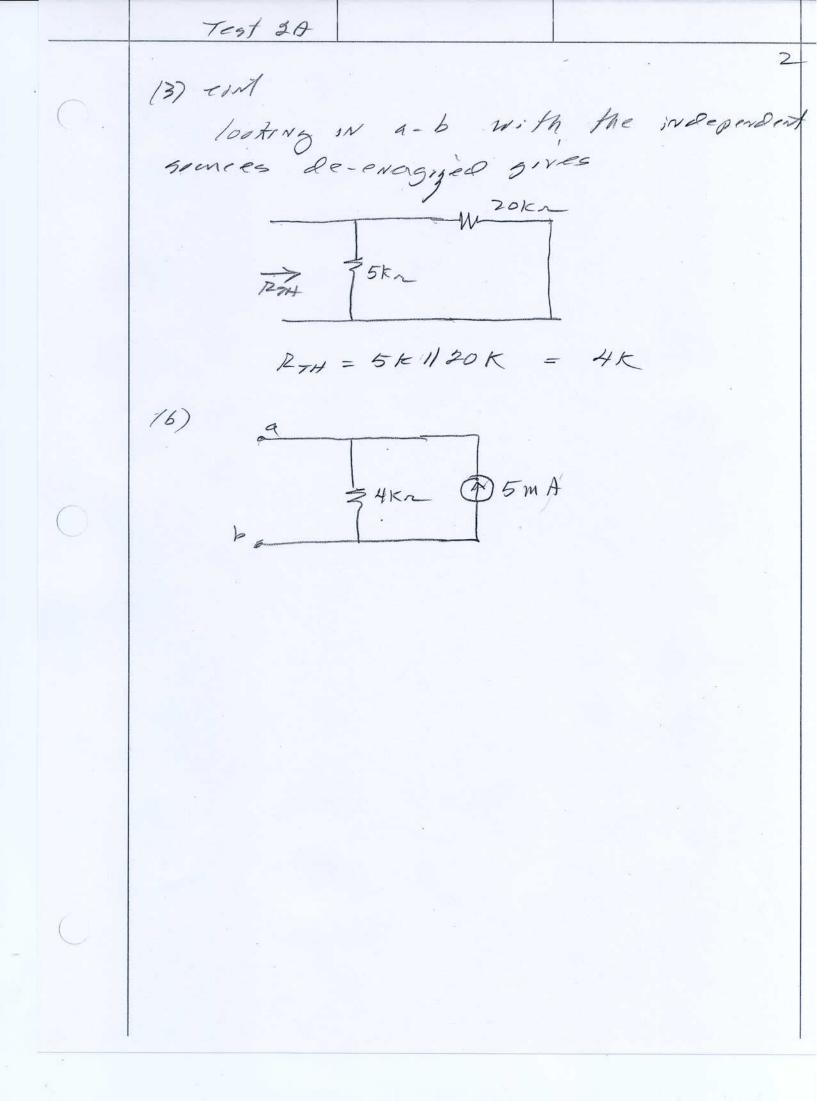
$$\frac{2-10}{5K} + \frac{2-5}{5K} + \frac{2-V_{0}}{10K} = 0$$

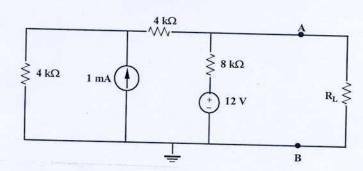

$$-16 - 6 + 2 - V_{0} = 0$$

$$V_{0} = -20V$$


(3) You are given the circuit of Figure 3.

b


- (a) Find the Norton equivalent circuit with respect to terminals a-b. You are required to find I_{NORTON} by actually finding the short circuit current.
- (b) Draw your Norton equivalent circuit showing the I_{NORTON}, R_{TH} and terminals a-b.


The pineart is equivalent to

All the considered from the current somees will go through the short,

- (4) You are given the circuit of Figure 4.
 - (a) Find the Thevenin equivalent circuit to the left of A-B. Draw the circuit.
 - (b) Find the value of R_L for maximum power transfer to R_L .
 - (c) What is the value of the power delivered to R_L when it has the value found in (b)?

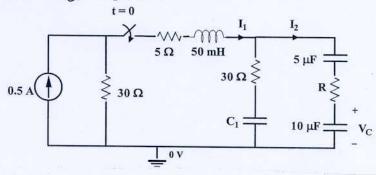
In) Find the RTH

Looking into a-b with the removed

and independent sources de-energyée:

RTH = 84 (4k + 4k) = 4km

Find Vab with the removed:


Using source transformation gives

8km

HV (1)

The source of the s

- (5) Consider the circuit shown in Figure 5. The switch is closed at t = 0 and has been closed long enough for the circuit to reach steady state; that is, all currents and voltages in the circuit have reached constant values. C₁ and R are unknown. Under these conditions determine the
 - (a) currents I_1 and I_2 , (b) the capacitor voltage V_c ,
 - (c) the energy stored in the AuF capacitor.

(a) Since the emperitors set like open-circuits in steady state; $T_1 = T_2 = 0$

1b) The enprent some med 3052 register give

The vollage Across the lung

The voltage ACROSS the 5MF CAPRITOR

15 15-5=10V

i. $W_{c_5} = \frac{1}{2}5 \times 10 \times 10^2 = 250 \times 10^{-5}$ Towles