ECE 300 Spring Semester, 2007 Test #2

Test B wlg

Name

Work the exam on your own engineering paper. Work on one side of your paper only. Attach your work to the back of this exam sheet and staple in the top left hand corner. . Each problem percentage credit is indicated out beside the problem.

(1) You are given the circuit of Figure 1.

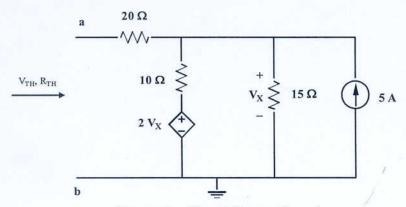


Figure 1: Circuit for problem 1.

- (a) Determine the short-circuit current, that is, the current flowing through a wire with zero ohms connected between a-b. Assume the positive direction of the current to be a to b.
- (b) Determine the open-circuit voltage, that is, the voltage, Vab, between terminals a-b with the short removed.
- (c) Determine V_{TH} (Thevenin's voltage) and R_{TH} (Thevenin's resistance) looking into a-b.
- (d) Draw the Thevenin circuit.
- (2) You are given the circuit of Figure 2.
 - (a) Find the Norton equivalent circuit with respect to terminals a-b. You are required to find I_{NORTON} by actually finding the short circuit current.
 - (b) Draw your Norton equivalent circuit showing the I_{NORTON}, R_{TH} and terminals a-b.

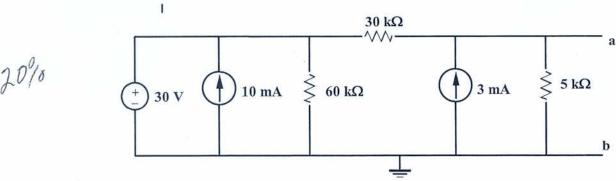


Figure 2: Circuit for problem 2.

25/0

(3) Determine the value of V_S in the op amp circuit of Figure 3 so that $V_O = -2 V$.

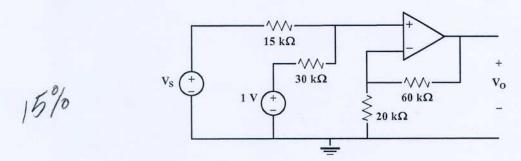


Figure 3 Circuit for problem 3.

- (4) You are given the circuit of Figure 4.
 - (a) Find the Thevenin equivalent circuit to the right of A-B. Draw the circuit.
 - (b) Find the value of R_L for maximum power transfer to R_L.
 - (c) What is the value of the power delivered to R_L when it has the value found in (b)?

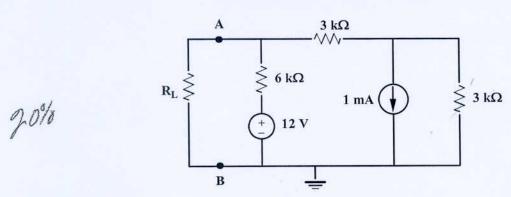


Figure 4: Circuit for problem 4.

- (5) Consider the circuit shown in Figure 5. The switch is closed at t=0 and has been closed long enough for the circuit to reach steady state; that is, all currents and voltages in the circuit have reached constant values. C_2 and R_3 and L_2 are unknown. Under these conditions
 - (a) find the energy stored in the 0.1 H inductor (give units),
 - (b) the capacitor voltage V_{C1} ,
 - (c) the capacitor voltage V_{C2}.

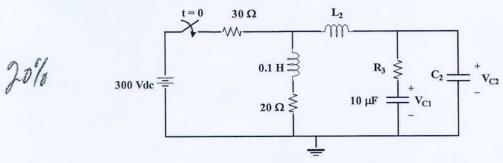


Figure 5: Circuit for problem 5.

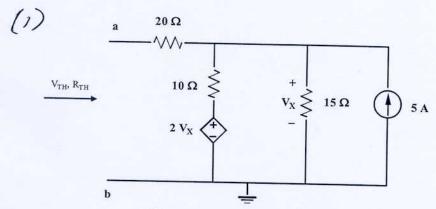


Figure 1: Circuit for problem 1.

- (a) Determine the short-circuit current, that is, the current flowing through a wire with zero ohms connected between a-b. Assume the positive direction of the current to be a to b.
- (b) Determine the open-circuit voltage, that is, the voltage, Vab, between terminals a-b with the short removed.
- (c) Determine V_{TH} (Thevenin's voltage) and R_{TH} (Thevenin's resistance) looking into a-b.
- (d) Draw the Thevenin circuit.

(a) Dugw with the short ext,

Let the node voltage at A be

$$V_{x}$$
 (we can do this because

this is true)

At A

 V_{x}
 V_{x

- (2) You are given the circuit of Figure 2.
 - (a) Find the Norton equivalent circuit with respect to terminals a-b. You are required to find I_{NORTON} by actually finding the short circuit current.
 - (b) Draw your Norton equivalent circuit showing the I_{NORTON}, R_{TH} and terminals a-b.

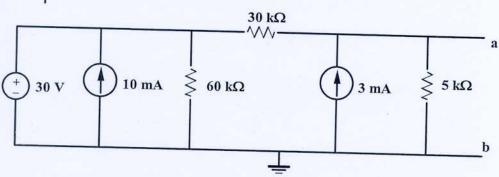
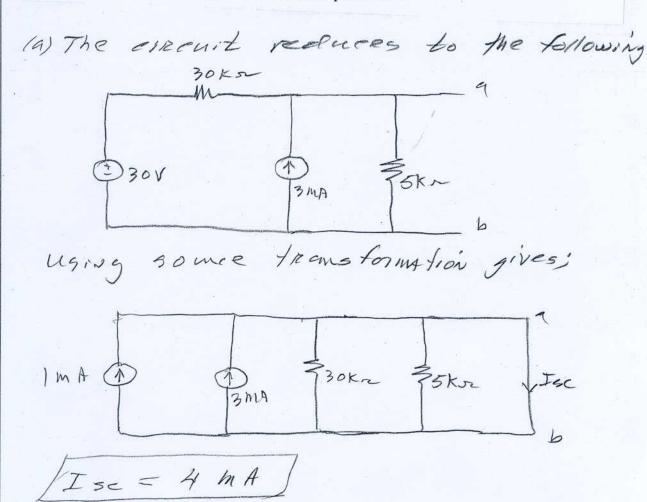
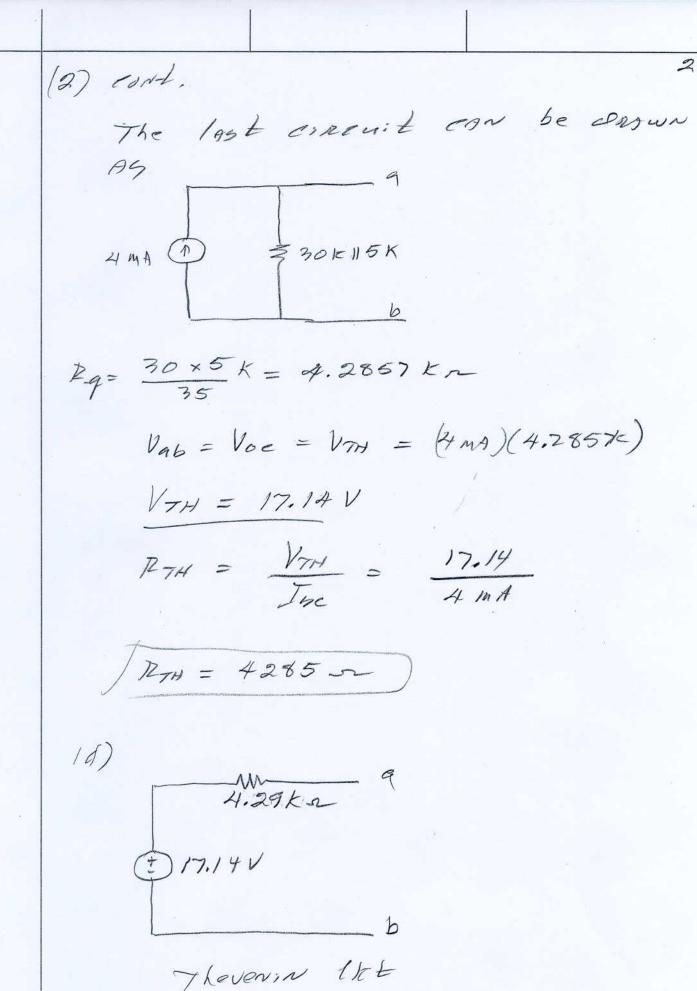
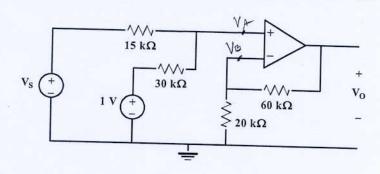





Figure 2: Circuit for problem 2.

(3) Determine the value of V_S in the op amp circuit of Figure 3 so that $V_O = -2 \text{ V}$.

At VA:

$$\frac{V_{A} - V_{5}}{15K} + \frac{V_{A} - 1}{30K} = 0$$

$$2V_{A} - 2V_{5} + V_{A} - 1 = 0$$

$$3V_{A} = 2V_{5} + 1$$

$$V_{A} = 2V_{5} + 1$$

AZ VB

VA= VB

$$\frac{2V_5+1}{3} = .25V_0 / = -0.5$$

$$V_6 = -2$$

$$\frac{V_{A}}{20K} + \frac{V_{A} - V_{2}}{60K} = 0$$

$$3V_{A} + V_{A} - V_{5} = 0$$

$$V_{A} = \frac{V_{3}}{4} = \frac{2V_{5} + 1}{3}$$

$$\frac{V_{A}-V_{5}}{19K} + \frac{V_{A}-1}{30K} = 0$$

$$2V_{A}-2V_{5} + V_{A}-1 = 0$$

$$3V_{A} = 2V_{5}+1$$

$$V_{A} = 2V_{5}+1$$

$$V_{A} = 2V_{5}+1$$

$$-0.5 = 2V_{5}+1$$

$$2V_{5} = -2.5$$

$$V_{5} = -1.25$$

$$\frac{VA}{20K} + \frac{VA - VO}{60K} = 0$$

$$3VA + VA - VO = 0$$

$$4VA = VO$$

$$VA = \frac{VO}{4} = -0.5$$

- (4) You are given the circuit of Figure 4.
 - (a) Find the Thevenin equivalent circuit to the right of A-B. Draw the circuit.
 - (b) Find the value of R_L for maximum power transfer to R_L.
 - (c) What is the value of the power delivered to R_L when it has the value found in (b)?

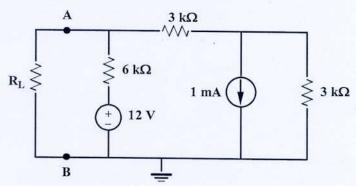


Figure 4: Circuit for problem 4.

(A) Look into A-B with R2 removed

AND independent sources do-energized

3km

RTH 36km

BTH 36km

With A-B open and using some ex-tomation:

T 3km

With A-B open and using some

X-tomation:

T 3km

Why

T 3km

T

 $P_{L} = \left(\frac{4.5}{6\kappa}\right)^{2} \times 3K = 1.688 \text{ mW}$ $P_{L} = 1.688 \text{ mW}$

- (5) Consider the circuit shown in Figure 5. The switch is closed at t=0 and has been closed long enough for the circuit to reach steady state; that is, all currents and voltages in the circuit have reached constant values. C_2 and R_3 and L_2 are unknown. Under these conditions
 - (a) find the energy stored in the 0.1 H inductor (give units),
 - (b) the capacitor voltage V_{C1},
 - (c) the capacitor voltage V_{C2}.

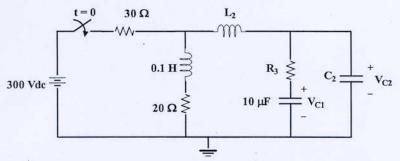


Figure 5: Circuit for problem 5.

19) IN steady state the circuit is
As follows (capacities open, inclustors
shorted)

$$\frac{1}{30n} = \frac{1}{20n} + \frac{1}{30n} + \frac{1}{30n} = \frac{1}{30n} + \frac{1}{30n} = \frac{1}{30n} + \frac{1}{30n} = \frac{1}$$

$$I = \frac{300}{50} = 6A$$

$$W_{L} = \frac{1}{2}LJ^{2} = \frac{1}{2} \times 0.1 \times 6^{2} = 1.8 \text{ Jouley}$$

2 (5) cont The empreitor vollage Ve, is The same as Vo: Vo = 300 x 20 = 120 V Ve, = 120V 10) No HECKER THUR R 40

/ Vez = Ve, = 120V