
(1) You are given the circuit of Figure 1 with the indicated source voltage and line current. The line current is know to be; $\mathbf{I}=1.77 \angle-35^{\circ} \mathrm{A}$. Determine the approximate value of the inductance L .

$$
\begin{aligned}
& Z=\frac{\vec{V}}{\vec{I}} \\
& \text { where } \\
& \vec{V}=50 \angle 10, ~ \\
& Z= \frac{50 \angle 10}{1.77 \angle-35}=28.25 \angle 45
\end{aligned}
$$

$Z=R+j \omega L=20+j \omega L=19.99+j 19.99$
coL $=19.99$

$$
L=\frac{19.99}{20} \pm 1 \mathrm{H}
$$

(2) You are given the op-amp circuit of Figure 2. Determine the phasor current \mathbf{I} shown in the diagram. Express your answer in polar form.

Theveriv to the left of $a-b$

$$
\begin{aligned}
& \hat{V}_{0}=-110 \times \frac{80 k}{10 K+10 k}=-\frac{8}{1+j} \\
& I=\frac{\hat{V}_{0}}{4 k}=-\frac{2}{1+j} m A \\
& I^{1}=1.414 L 135^{\circ} m A
\end{aligned}
$$

Around the supanmest:

$$
-40 L 15+(20+j 30) I_{1}+(10-j 10) I_{2}+10 L 15=0
$$

$$
\begin{aligned}
(20+j 20) I+(10-j 10) I_{2}= & 40 \angle 15-10 \angle 15 \\
= & 40 \angle 15+10 \angle-165 \\
t & \\
& 30 \angle 15
\end{aligned}
$$

Corstanint

$$
\begin{aligned}
& I_{1}-I_{2}=4 \angle 20 \\
& {\left[\begin{array}{cc}
20+j 20) & 10-j 10) \\
1 & -1
\end{array}\right]\left[\begin{array}{l}
I_{1} \\
\hat{I}_{2}
\end{array}\right]=\left[\begin{array}{c}
30 L 15 \\
4020 \angle-165 \\
420
\end{array}\right]} \\
& I_{1}=2.59 \angle-29.8^{\circ} A \quad I_{2}=3.06\left\langle-19.7^{\circ}\right.
\end{aligned}
$$

(4) You are given the AC circuit shown in Figure 4.
(a) Use nodal analysis to find the node voltages \mathbf{V}_{1} and \mathbf{V}_{2} as indicated in the circuit diagram. Express \mathbf{V}_{1} and \mathbf{V}_{2} in polar form.
(b) Prepare a phasor diagram showing \mathbf{V}_{1} and \mathbf{V}_{2}. Which voltage is leading? Explain.

$A t$ node V,

$$
\begin{aligned}
& \frac{V_{1}-40 L-20}{20}+\frac{V_{1}}{10}+\frac{V_{1}-V_{2}}{-v 10}=0 \\
& 0.05 V+0.1 V+j 0.1 V-j 0.1 V_{2}=2 L-20 \\
& (0.15+j 0.1) V_{1}+(0-v 0.1) V_{2}=2 L-20
\end{aligned}
$$

At node V_{2}

$$
\begin{aligned}
& \frac{V_{2}-V_{1}}{-j 10}+\frac{V_{2}}{V^{2} 0}=4 L 30 \\
& j 0.1 V_{2}-j 0.1 V-j 0.05 V_{2}=4 L 30 \\
& (0-j 0.1) V+(0+j 0.05) V_{2}=4 \angle 30 \\
& {\left[\begin{array}{ll}
(0.15+j 0.1)(0-j 0.1) \\
(0-j 0.1) & (0+j 0.05)
\end{array}\right]\left[\begin{array}{l}
V_{1} \\
\hat{V}_{2}
\end{array}\right]=\left[\begin{array}{l}
21-20 \\
4130
\end{array}\right]} \\
& \hat{V}_{1}=52.2 \angle 54.3^{\circ} \mathrm{V} \quad \hat{V}_{2}=102.1 \angle 8.75^{\circ} \mathrm{V}
\end{aligned}
$$

$$
V_{1} \text { leode } V_{2} \text { by } 54.3-8.75=45.6^{\circ}
$$

The rensor is thoul angle of V_{1} is gireste, Inan trie angle of V_{2}

(5) The load for a certain AC circuit is shown in Figure 5.
(a) Find the impedance of this load, \mathbf{Z}, as indicated in the diagram. Express your answer in polar form.
(b) Determine whether this is a leading or lagging load. Explain your answer.

$$
\begin{aligned}
& z_{c d}^{(a)}=\frac{\left(30+v^{40}\right)(20-i 40)}{30+i 40+20-j 40}=\frac{(30+; 40)(20 ; 40)}{50} \\
& z=20-j 20+z_{c d} \\
& z=64-j 28 . \Omega \\
& z=69.8 .6 L-23.6 \Omega
\end{aligned}
$$

ib) I sAgging lond, angle of z
is negative.

