 The line current is know to be; $\mathbf{I}=2.83 \angle 60^{\circ} \mathrm{A}$. Determine the approximate value of the capacitor C .

$$
\begin{aligned}
& z=\frac{\hat{V}}{\vec{I}} \\
& \text { where } \vec{V}=40 \angle 15^{\circ} \mathrm{V} \quad \vec{I}=2.83160^{\circ} \mathrm{A} \\
& \vec{z}=\frac{40 \angle 15}{2.83160^{\circ}}=9.99-j 9.99 \\
& z=R+\frac{1}{j \omega C}=10-\frac{j}{\omega C} \\
& \frac{-j}{\omega c}=-j 9.99
\end{aligned}
$$

(2) You are given the op-amp circuit of Figure 2. Determine the phasor output voltage \mathbf{V} as shown in the circuit diagram. Express \mathbf{V} in polar form.

Theverin to the left of $a-b$

$$
V_{T H}=1120^{\circ} \mathrm{V} ; \quad R_{T H}=20 \mathrm{~K}
$$

$$
\begin{aligned}
& \hat{V}=-1 \angle 20^{\circ} \times \frac{z_{f S}}{z_{\text {in }}}=\frac{11-160(20 L-90) K}{40 \mathrm{~K}} \\
& \hat{V}=0.5 \angle 110^{\circ} \mathrm{V}
\end{aligned}
$$

hupermenh

$$
\begin{aligned}
& -30 L 15+(10+j 10) I_{1}+(10-j 10) I_{2}+10 L 15=0 \\
& (10+j 10) I_{1}+(10-j 10) I_{2}=20 L 15
\end{aligned}
$$

Constraint

$$
\begin{gathered}
I_{1}-I_{2}=4 L Z 0 \\
{\left[\begin{array}{cc}
(10+j 10) & (10-j 10) \\
1 & -1
\end{array}\right]\left[\begin{array}{l}
I_{1} \\
I \\
I_{2}
\end{array}\right]=\left[\begin{array}{c}
20 \angle 5 \\
4 L 20
\end{array}\right]} \\
I_{1}=3.65 L-14.9^{\circ} \mathrm{A} \quad I_{2}=2.32 \angle-95.7^{\circ} \mathrm{A}
\end{gathered}
$$

(4) You are given the AC circuit shown in Figure 4.
(a) Use nodal analysis to find the node voltages $\mathbf{V}_{\mathbf{1}}$ and $\mathbf{V}_{\mathbf{2}}$ as indicated in the circuit diagram. Express \mathbf{V}_{1} and \mathbf{V}_{2} in polar form.
(b) Prepare a phasor diagram showing $\mathbf{V}_{\mathbf{1}}$ and $\mathbf{V}_{\mathbf{2}}$. Which voltage is leading? Explain.

At node V_{1}

$$
\begin{aligned}
& \frac{v_{1}}{10}+\frac{v_{1}-v_{2}}{-j 10}=4 \angle 30 \\
& 0.1 \vec{r}_{1}+j 0.11_{1}-j 0.1 V_{2}=4 \angle 30 \\
& (0.1+j 0.1) v_{1}+(0-j 0.1) v_{2}=4 \angle 30
\end{aligned}
$$

At node V_{2}

$$
\begin{aligned}
& \frac{V_{2}-V_{1}}{-10}+\frac{V_{2}}{j 20}+\frac{V_{2}-40 L-20}{20}=0 \\
& j 0.1 V_{2}-j 0.1 V-j 0.05 V_{2}+0.05 V_{2}=2 \angle-20 \\
& \left(0-j 0.1 V_{1}\right)+(0.05+j 0.05) V_{2}=2 L-20 \\
& {\left[\begin{array}{l}
(0.1+j 0.1)(0-j 0.1) \\
(0-j 0.1)(0.05+j 0.05)
\end{array}\right]\left[\begin{array}{l}
V_{1} \\
V_{2}
\end{array}\right]=\left[\begin{array}{l}
4 \angle 30 \\
2 L-20
\end{array}\right]} \\
& V_{1}=34.11 L 27.9^{\circ} V \quad V_{2}=33.19 \angle 38.10 \mathrm{~V}
\end{aligned}
$$

(4)

