$$
4 \operatorname{tac}
$$

CE 301
Fall Semester, 2007
HW Set \# 4
Due: October 9, 2007
wig
Name

Use Engineering Paper. Work only on one side of the paper. Use this sheet as your cover sheet, placed on top of your work and stapled in the top left-hand corner. Number the problems at the top of the page, in the center of the sheet. Do neat work. Underline your answers. Show how you got your equations. Be sure to show how you got your answers. _Each problem counts 15 points.
4.7 (a) $\mathrm{v}_{\mathrm{c}}=50$ for $\mathrm{t}<0,=50 \mathrm{e}^{-50 \mathrm{t}} \vee \mathrm{t}>0: \mathrm{v}_{\mathrm{R}}=0$ for $\mathrm{t}<0,=50 \mathrm{e}^{-50 t} \vee \mathrm{t}>0$
(b) $p_{R}(t) 2500 e^{-100 t} W$
(c) $25 \mu \mathrm{~J}$
$4.11 \mathrm{R}=4.33 \mathrm{M} \Omega$
4.17 (a) $\mathrm{i}\left(0^{+}\right)=1 \mathrm{~mA}$,
(b) $\frac{d i(t)}{d t}+\frac{1}{R}\left[\frac{1}{C_{1}}+\frac{1}{C_{2}}\right] i(t)=0$
(c) 50 msec
(d) $\quad i(t)=e^{-20 t} m A$
(e) 50 V
$4.23 \mathrm{i}=5 \mathrm{~mA}, \quad \mathrm{v}_{\mathrm{x}}=10 \mathrm{~V}, \quad \mathrm{v}_{\mathrm{c}}=-15 \mathrm{~V}$
$4.28 \mathrm{v}_{\mathrm{R}}=0, \mathrm{t}<0 \quad v_{R}=10 e^{-0.5 t} \quad V, t \geq 0$
$4.32 \mathrm{i}(\mathrm{t})=0$ for $\mathrm{t}<0 ; \quad i(t)=\left(1-e^{-20 t}\right) A, t \geq 0$
$4.35 i(t)=\left(0.5-0.5 e^{-200 t}\right) A, \quad t \geq 0$
$v_{L}=100 e^{-200 t} V \quad t \geq 0$
$4.48 \quad i(t)=(1 / 60) e^{-300 t}-(1 / 60) \cos 300 t+(1 / 60) \sin 300 t A \quad t \geq 0$
Use MATLAB to plot the above function. Plot for the time range of $t=0: 0.001: 0.25$; A copy of the expected plot is attached to this sheet. Turn in both your plot and a copy of your MATLAB program.

E CE 301
Homework \#4
FAll hamestop, 2007
4.7 In the ciecuit below, the capacitor is changed to 50 V prior to alosing the switch at $t=0$.

(a) Find expressions for the voltage across the eapieitor ane voltage across the resistor using nodal analysis

$$
\begin{align*}
& C \frac{d V_{c}}{Q t}+\frac{V_{c}}{R}=0 \\
& \frac{D V_{c}}{d t}+\frac{V_{c}}{R C}=0 \tag{1}
\end{align*}
$$

Assume $r_{e}=大 e^{s t}$
substitute in to (1), Fop-Comm the math levers to

$$
b+\frac{1}{E C}=0
$$

4.7 (curtinnee)

We have $\gamma=R e=1 \times 10^{6} \times .02 \times 10^{-6}$

$$
\tau=.02 \quad \frac{1}{\tau}=50
$$

30

$$
\left.v_{c} \mid t\right)=k e^{-50 t}
$$

To evaluate K, use initial condition of eqpreitas voltage. We know that for the espocitar

$$
\begin{aligned}
& V_{c}\left(0^{-}\right)=50 \nu=V_{c}\left(0^{x}\right) \\
&\left.V_{c}(t)\right|_{t=0}=50=k e^{-50 t /}=t \\
& t=0 \\
& V_{c}(t)=50 e^{-50 t} v \quad t \geqslant 0
\end{aligned}
$$

From the circuit liagosum we Eric that $V_{c}(t)=V_{k}(t)$,
then

$$
\gamma_{R}(t)=50 e^{-50 t} v \quad t \geq 0
$$

QED

4,7 (cont)
(b) Find the aypression to s the power selimeed to the resistor.
We know on generally that
$P_{R}=\frac{v_{r}^{2}}{k}$, and fore th. s
cone

$$
\begin{aligned}
& P_{R}=\frac{\left[50 e^{-50 t}\right]^{2}}{1 \times 10^{6}} \\
& P_{1 R}=\frac{2500 e^{-100 t}}{1 \times 106}=2500 e^{-100 t} \mu \mathrm{~W}
\end{aligned}
$$

(c)

$$
\begin{aligned}
& W=\int_{0}^{t=00} F_{R} d t=\int_{0}^{t=\infty} 2500 \times 10 e^{-6} e^{-100 t} A t \\
& W=\left.\frac{2500 \times 10^{-6}}{-100} e^{-100 t}\right|_{0} ^{\infty} \\
& W=0-\left[-\frac{2500}{100} \times 10^{-6}\right] \\
& W=25 \times 10^{-6} \mathrm{~J}=25 \mu \mathrm{JJ}
\end{aligned}
$$

4,7 (cont)
(d) yhow that evergy delivere to the res.stox = ovengy stored in the copaciter,
The initiol evergy stored in the capacitor is

$$
\begin{aligned}
W_{c} & \left.=\frac{1}{2} C V_{c} 10^{+}\right)^{2} \\
& =\frac{1}{2} \times .02 \times 10^{-6} \times 50^{2} \\
& =.01 \times 10^{-6} \times 2500 \\
W_{C} & =25 \times 10^{-6} \mathrm{~J}=25 \mu J
\end{aligned}
$$

Hill Yonsider the cireuit below

The eapacitor is initislly chagee. The swifch closes at $L=0$, $A t$ $t=0$, the voltimetek rovels so V , The voltmeyen can be vegresented as a resistre. At $t=30 \mathrm{sec}$, - Hie meter rucses gos v, Find the value of r for the netee. solation

We know

$$
V_{c}(t)=V_{F}(t)=E_{1}\left(0^{+}\right) e^{-\frac{t}{R c}}
$$

The g.ven rolues are

$$
\begin{aligned}
& c=10 \times 10^{-6} \mathrm{~F}, \quad V_{c}\left(0^{*}\right)=50 \mathrm{~V} \\
& V_{c}(30)=25,
\end{aligned}
$$

5o

$$
25=50 e^{-\frac{30}{12}}
$$

4.1) (cont)
so toting the In of
both sides

$$
\begin{aligned}
& \ln (.5)=\ln \left(e^{\left.-\frac{30}{R C}\right)}=\frac{-30}{R c}\right. \\
& -69315=-\frac{30}{12 c} \quad \text { hat } c=10 \times 10^{-6} \\
& R C=\frac{30}{69315} \quad \frac{30 \times 10^{6}}{6.9315}=A 1328 . \mathrm{mr}
\end{aligned}
$$

4.17 We are giver the circuit below

Given initial conditions.

$$
V_{1}\left(0^{-}\right)=100 \mathrm{~V}, \quad V_{2}\left(0^{-}\right)=0 \mathrm{~V}
$$

(a) Immedintoly after the switch is closed, what is $i\left(0^{*}\right)$? We Enow

$$
\begin{aligned}
& i\left(0^{+}\right)=\frac{V_{1}\left(0^{+}\right)-U_{2}\left(0^{+}\right)}{R} \\
& i\left(0^{+}\right)=\frac{100-0}{100 k}=1 \mathrm{~mA}
\end{aligned}
$$

(b) Write $t V L$ un terms of $V,(t), V_{2}(t)$ and $t_{z}(t)$

$$
\begin{gathered}
-p_{1}(t)+i(t) R+V_{2}(t)=0 \\
-\left[-\frac{1}{C_{1}} \int_{0}^{t} i(t) \partial \theta-V_{1}(0)\right]+i(t) R+\frac{1}{c_{2}} \int_{1}^{t} i \operatorname{Ref}+V_{2}(0)=0
\end{gathered}
$$

Take the derivative of the above wist t.
4.17 (rant)

$$
\begin{aligned}
& \frac{e^{\prime}(t)}{e_{1}}+R \frac{l_{1}^{\prime}}{e_{1}}+\frac{\rho^{\prime}(t)}{l_{2}}=0 \\
& \frac{D_{1}^{\prime}}{e_{1}}+\frac{1}{R}\left[\frac{1}{l_{1}}+\frac{1}{l_{2}}\right] h^{\prime}(t)=0
\end{aligned}
$$

(c) What is the value of the time eurstart?
The time eorstant is

$$
R C=\pi
$$

so for this case

$$
\begin{aligned}
& C_{y}=\frac{c_{1} l_{2}}{C_{1}+C_{2}} \\
& \tau=R \frac{C_{1} C_{2}}{C_{1}+C_{2}}=100 \times 10^{3} \times 0.5 \times 10^{-6} \\
& \tau=50 \mathrm{msec}
\end{aligned}
$$

14) We have

$$
\begin{aligned}
& \frac{d i}{d t}+20 i(t)=0 \\
& i(t)=k e^{-20 t} \\
& i\left(0^{+}\right)=1 \times 10^{-3} \\
& i(t)=1 \times 10^{-3} e^{-20 t} A \quad t \geq 0
\end{aligned}
$$

4,17 cort
(e) Find the value that V_{g} approadles as t
betomes veng lage.

$$
\begin{aligned}
V_{2}(t) & =\frac{1}{l_{2}} \int_{0}^{t} i(t) 0 t+V_{2}\left(0^{t}\right) \\
V_{2}(t) & =\frac{1}{l_{2}} \int_{0}^{\infty} 1 \times 10^{-3} e^{-20 t} d t+0 \\
& =\frac{1 \times 10^{-3}}{1 \times 10^{-6}}\left[-\left.\frac{1}{20} e^{-20 t}\right|_{0} ^{\infty}+0\right. \\
\left(r_{2}(\infty)\right. & =\frac{1 \times 10^{3}}{20}=50 \mathrm{~V}
\end{aligned}
$$

4,23
We are giver the following sieenit

Find $/ L$ ' V_{x} ane V_{c} in syedey stable.
solution
DRAw the sterdy state circuit. (di) \longrightarrow skint appocitcs \longrightarrow open

$i_{L}=5 \mathrm{~mA}$ (no current though Bt)
$\frac{\text { For } v_{x}}{\text { white }} \in V L$

$$
\begin{aligned}
& -v_{x}+2 \times 10^{3} \times 5 \times 1 i^{-3}=0 \text { (short is present) } \\
& v_{x}=10 \mathrm{~V}
\end{aligned}
$$

For V_{c}

$$
\begin{aligned}
& v_{c}+15=0 \\
& v_{c}=-15 \mathrm{~V}
\end{aligned}
$$

4.28 We are given the following circuit,

Switch is in the "A" position for a vary long time. At $t=0$, it is moved to position B.
Fine the expression fop $V_{R}(t)$ and sketch the wave form for $-2 \leq 2 \leq 10 \mathrm{~s}$.
jolutroin
The switch being, 2 position A for a vang long tome establishes $V,\left(0^{-}\right)=$Voltage across the 100 kr resister. This voltage is easily fore by voltage Division.

$$
V_{c}\left(0^{-}\right)=V_{c}\left(0^{\sigma}\right)=10 \mathrm{~V}
$$

Now look at the crsoust after switching to B.
$4,28(\operatorname{con} t)$

$$
\begin{array}{ll}
+\sqrt{+} & \\
C= & R\left\{\begin{array}{l}
+ \\
U_{R}
\end{array}\right. \\
-
\end{array}
$$

We know from previous work,

$$
\begin{aligned}
& V_{c}(t)=V_{R}(t)=V_{c}\left(0^{+}\right) e^{-\frac{t}{R c}} \\
& R c=200 \times 10^{3} \times 10 \times 10^{-6} \\
& R_{c}=2000 \times 10^{-3}=2 \mathrm{sec}=\tau \\
& V_{R}(t)=10 e^{-0.5 t} \frac{V}{}=0 \\
& V_{R}(t)=0, \quad t<0
\end{aligned}
$$

4,32
We are giver the following circuit which is operating in steady state prior to $t=0$

Prion to $t=0, i\left(0^{-}\right)=D A$ by inspection' (all the 2A goes thru the short) after $t=0$, we have, with a nowne flans fowmstron,

We can write

$$
\begin{aligned}
& E=R_{i}+L \frac{d i}{d t} \\
& \frac{d_{i}}{d t}+\frac{R}{\alpha} i(t)=\frac{E}{L}
\end{aligned}
$$

4.32 (cont)
putting in numbers

$$
\begin{aligned}
& \frac{L_{1}}{e t}+20 \lambda()=20 \\
& i(t)=i p+i_{c} \\
& i p=K \\
& 20 K=20 \\
& K=1
\end{aligned}
$$

Find ic from

$$
\begin{aligned}
& \frac{d_{1}^{\prime}}{d t}+2 d_{i}=0 \\
& i_{c}(t)=k_{c} e^{-20 t} \\
& i^{\prime}(t)=1+k_{c} e^{-20 t}
\end{aligned}
$$

Find K_{c} using $\left.i, 10^{*}\right)$
We know i($\left.\left.10^{-}\right)=i / 0^{\circ}\right)=0 A$

$$
\begin{aligned}
& 0=1+k_{c} e^{-20 t}=1+K_{c} \\
& H_{c}=-1 \\
& \Lambda^{\prime}(t)=1-e^{-20 t} A \quad t \geq 0
\end{aligned}
$$

4,35
We ase giver the following ejrcust.

Find $i(t)$, skefch the wavetoum to scole.
Find an expisession tor $V_{L}(t)$ $\frac{\text { Toluthoi }}{\text { We rqN write }}$

$$
\begin{aligned}
& V_{s}=R_{i}+L \frac{R_{i}}{D^{\prime}} \\
& \frac{D_{i}^{\prime}}{Q^{\prime}}+\frac{R_{i}(1)}{L}=\frac{V_{s}}{L}
\end{aligned}
$$

putting on numbars

$$
\begin{align*}
& \left.\frac{l_{1}}{d t}+20011 t\right)=100 \tag{1}\\
& i(t)=i_{3}+i_{c}=i_{S S}+i_{t} \\
& i_{s s}=k_{\text {Ss }}
\end{align*}
$$

21.35 (lort)
putting into (r) gives

$$
\begin{aligned}
& 2_{00} \mathrm{~F}_{S S}=100 \\
& E_{\text {SS }}=0.5
\end{aligned}
$$

golue

$$
\frac{d i}{d t}+300 n^{\prime}(t)=0
$$

for i_{t}^{\prime}

$$
\begin{align*}
& \therefore \lambda_{t}=k_{t} e^{-200 t} \\
& i(t)=0.5+k_{t} e^{-200 t} A \tag{2}\\
& i\left(0^{-}\right)=i\left(\partial^{t}\right)=0
\end{align*}
$$

cumient cort climge inst.
so, ovaluale $\mid z$ at $t=0^{+}$

$$
\begin{aligned}
& 0=0.5+k_{t} \\
& k_{t}=-0.5
\end{aligned}
$$

then

$$
r(t)=0.5-0.5 e^{-200 t} x, \quad t \geq 0
$$

$$
4,35 \quad(\operatorname{con} t)
$$

$$
\begin{aligned}
& V_{2}=\frac{L \theta^{\prime}}{\rho t} \\
& V_{L}=1 \times \frac{8}{\partial t}\left[.5-.5 e^{-200 t}\right] \\
&=.5 \times 200 e^{-200 t} \\
&=100 e^{-200 t} \\
& 100 \\
& V_{2 / t} \\
& .368 \times 100
\end{aligned}
$$

4.45

We are giver the circuit below,

Assume $V_{c}\left(0^{-}\right)=0$
Derive an expression for $v_{1}(t), t \geq 0$,

$$
i=c \frac{d v_{c}}{d x}
$$

We write

$$
\begin{aligned}
& V(t)=R\left(1+t+V_{c}(t)\right. \\
& V(t)=R C \frac{Q V_{c}}{C l}+V_{c}(t) \\
& \frac{d V_{c}}{d t}+\frac{V_{c}(t)}{V_{c}}=\frac{t}{R c} \\
& V_{c}(t)=V_{e_{s s}}+V_{e_{t}} \\
& V_{e_{\text {ss }}}=A+B t \\
& \text { pat this into } 12)
\end{aligned}
$$

4.45 (cont)

$$
\begin{aligned}
& \frac{d}{d t}(A+B Z)+\frac{A+B t}{R C}=\frac{t}{R C} \\
& B+\frac{A+B t}{R C}=\frac{t}{R C} \\
& \left(\frac{A}{R C}+B\right)+\frac{B}{R c} t=\frac{t}{R L}
\end{aligned}
$$

Equate cretficionts of lite power.

$$
\begin{aligned}
& \frac{A}{R C}+B=0 \\
& \frac{B}{R C}=\frac{1}{R C} \\
& \therefore B=1 \\
& \text { and } \begin{array}{rl}
A & A \\
\frac{A C C}{} & =-1 \\
A & =-R C \\
s o \\
V_{c s s} & =-R C+t
\end{array}
\end{aligned}
$$

4, 45 (cont)

$$
\begin{aligned}
& Y_{c_{t}}-s o t \cdot s f_{i}=s \\
& \frac{d V_{c}}{d e}+\frac{V_{c}}{R c}=0 \\
& O R \\
& V_{c_{t}}=k_{t} e^{-\frac{t}{R_{c}}}
\end{aligned}
$$

then

$$
\begin{aligned}
& v_{c}(t)=V_{s s}+v_{t} \\
& V_{c}(t)=-R_{c}+t+k_{z} e^{-\frac{t}{r_{c}}} \\
& V_{c}\left(0^{-}\right)=V_{c}\left(0^{t}\right)=0 \\
& 0=-R_{c}+K_{t} \\
& K_{t}=r c \\
& \therefore r_{c}(t)=-R_{c}+t+R_{c} e^{-\frac{t}{R_{c}}}
\end{aligned}
$$

4.48 we are giver the circuit below, $\quad-\left(0^{+}\right)=0$

Find the solution for $i(t)$.
We have

$$
\begin{aligned}
& V_{s}=R_{i}+\frac{L e_{i}}{d x} \\
& \frac{d_{i}}{d x}+\frac{x}{L} \lambda^{\prime}+1=\frac{V_{s}}{L}
\end{aligned}
$$

with numbers

$$
\begin{aligned}
& \frac{d i}{d P}+300 i(t)=10 \sin 300 t \quad(1) \\
& i(t)=i_{n s}+i_{t}=i_{p}+i_{c} \\
& i p=A \cos 300 t+B \sin 300 t
\end{aligned}
$$

substitute wto, group coefficients
24.48 (0nt)

$$
\begin{aligned}
\frac{A}{\partial t}=[A \cos 300 t+B \sin 300 t)+ & \left.300 \int A \cos 300 t+B \sin 300 t\right] \\
& =10 \sin 300 t
\end{aligned}
$$

$-300 A \sin 300 t+300 B \cos 300 t$

$$
\begin{aligned}
&+300 A \cos 300 t+300 B \sin 300 t \\
&=10 \sin 300 t
\end{aligned}
$$

$300(A+B) \cos 300 t+300(B-A) \sin 300 t=10 \sin 300 t$

$$
\begin{align*}
& 300 A+300 B=0 \\
& 0 R+B=0 \\
& -300 A+300 B=10 \\
& 0 B \\
& -30 A+30 B=1
\end{align*}
$$

$\operatorname{maltig} / 3$ (3) by 30 and ACPD

$$
\begin{aligned}
60 B & =1 \\
B & =\frac{1}{60} \\
A & =-\frac{1}{60}
\end{aligned}
$$

4.48 (lont)

$$
\begin{aligned}
& \dot{i}_{p}=-\frac{1}{60} \cos 300 t+\frac{1}{60} \sin 300 t \\
& i_{c}=k_{c} e^{-300 t}
\end{aligned}
$$

$$
A(t)=\Lambda_{1}^{\prime}+i_{c}^{\prime}
$$

$$
i(t)=-\frac{1}{60} \cos 300 t+\frac{1}{60} \sin 300 t+\frac{k_{e}}{e} e^{-300 t}
$$

$$
\begin{aligned}
& \text { (2) } \left.t=0,0^{\prime}\right)=0 \\
& 0=-\frac{1}{60}+K_{c} \\
& k_{e}=\frac{1}{60} \\
& (t)=\left(-\frac{1}{60} \cos 300 t+\frac{1}{60} \sin \geqslant 00 t+\frac{1}{60} \theta\right) A
\end{aligned}
$$

C:\MATLAB6p5\work\trig_functions.m	Page 1
October 10, 2007	$2: 06: 23 \mathrm{PM}$

\% The purpose of this problem is to use MATLAB to plot a
\% mixture of cosine, sine and exponential functions. This
\% function arises in ECE 301 from HW problem 4.48 in Hambley
\% History: wlg; October 2, 2007; Office PC
\% program name: trig_functions.m
\% set up the span of time and the time stepping
$\mathrm{t}=0: 0.001: \quad 0.25 ;$
\% define the function to be plotted

```
i = (1/60)*exp(-300*t) - (1/60)*\operatorname{cos}(300*t) + (1/60)*\operatorname{sin}(300*t);
```

\% plot the output
plot(t,i)
grid
gtext('Notice how fast the transient is over')
ylabel('i (amps)')
xlabel('t (sec)')
title('Transient response for RL circuit with sinusoidal forcing function')

