CE 301
Fall Semester, 2007
HW Set \# 5
Due: October 23, 2007
wig
Name

Use Engineering Paper. Work only on one side of the paper. Use this sheet as your cover sheet, placed on top of your work and stapled in the top left-hand corner. Number the problems at the top of the page, in the center of the sheet. Do neat work. Underline your answers. Show how you got your equations. Be sure to show how you got your answers. Problem 4.58 counts 50% and 4.61 counts 30%
4.58 Work the problem as stated in the text.

Answer: $\quad v(t)=50-53.87 e^{-0.268 \times 10^{4} t}+3.867 e^{-3.73 \times 10^{4} t} V u(t)$
Supplemental work for this problem.
(a) What value of R will cause the response $\mathrm{v}(\mathrm{t})$ to have a $\xi=0.3$? $\mathrm{R}=12$ ohms (my solution)
(b) Write out the differential equation with the correct coefficients with this zeta.
(c) Use MATLAB solution method passed out in class to solve this differential equation with the stated initial conditions given in the text.
(d) Use MATLAB to plot the response for $\mathrm{v}(\mathrm{t})$ from (c) out to five time constants.
4.61 Work the problem as stated in the text.

Answers: damping coefficient $=20 \times 10^{6}$; undamped resonant frequency $=10 \times 10^{6} \mathrm{rad} / \mathrm{sec}$
Damping ratio, $\xi=2$ (overdamped)

$$
v(t)=28.87 e^{2.68 \times 10^{6} t}-28.87 e^{-37.32 \times 10^{6} t} V u(t) \quad \text { (general solution) }
$$

4.58 Work the problem as stated in the text.

Answer: $\quad v(t)=50-53.87 e^{-0.268 \times 10^{4} t}+3.867 e^{-3.73 \times 10^{4} t} V u(t)$
Supplemental work for this problem.
(a) What value of R will cause the response $\mathrm{v}(\mathrm{t})$ to have a $\xi=0.3$? $\mathrm{R}=12$ ohms (my solution)
(b) Write out the differential equation with the correct coefficients with this zeta.
(c) Use MATLAB solution method passed out in class to solve this differential equation with the stated initial conditions given in the text.
(d) Use MATLAB to plot the response for $v(t)$ from (c) out to five time constants.

Assume: $i\left(0^{*}\right)=0, \quad V_{c}\left(0^{*}\right)=0 ; \quad R=80 r$
write the govenal die. use V_{s},
r, L and e

$$
\begin{aligned}
& R_{i}+L \frac{d i}{d t}+V_{c}(t)=V_{3} \\
& b_{n} f \quad i=C \frac{d V_{c}}{d t} \\
& \text { substitute (2) into (1) } \\
& \text { RC } \frac{d V_{c}}{d t}+L C \frac{d^{2} V_{c}}{d t^{2}}+V_{c}(t)=V_{3} \\
& \frac{d V_{c}^{2}}{d t^{2}}+\frac{R}{L} \frac{d V_{c}}{d t}+\frac{V_{c}(t)}{L C}=\frac{V_{3}}{L C}
\end{aligned}
$$

4.58 continued
une the givin volues of R, L, C, V_{s}

$$
\begin{aligned}
& \frac{\theta^{2} V_{c}}{A t^{2}}+\frac{80}{2 \times 10^{-3}} \frac{Q V_{c}}{Q t}+\frac{V_{c}}{2 \times 10^{-3} \times 5 \times 10^{-6}}=\frac{50}{2 \times 10^{-3} \times 5 \times 10^{(5)}} \\
& \frac{Q^{2} V_{c}}{A^{2}}+40 \times 10^{3} \frac{Q V_{c}}{O t}+0.1 \times 10^{9}=5 \times 10^{9}
\end{aligned}
$$

Chmacteristic equation

$$
\begin{aligned}
& b^{2}+40 \times 10^{3} s+, 1 \times 10^{9}=0 \\
& \left(s+2.68 \times 10^{3}\right)\left(b+3.73 \times 10^{4}\right)=0 \\
& \therefore V_{c}(t)=V_{c_{p}}+V_{c} \\
& V_{e p}=k_{p} \\
& \text { nubstitutivg in to (5) goves } \\
& V_{c p}=50 V \quad(19 s \times p e c t e d) \rightarrow V_{e}(c 0) \\
& \left.V_{e}(t)=50+k_{1} e^{-2.68 \times 10^{3} t}+k_{2} e^{-3.73 \times 10^{4} t} 16\right)
\end{aligned}
$$

We netel $\mathrm{V}_{\mathrm{c}}\left(\mathrm{o}^{+}\right.$) (guen as 0)
Go to $z_{q} / 2$ i $=C \frac{d V}{\operatorname{et}}$

4,58 cort
We have

$$
\frac{Q V_{c}\left(0^{x}\right)}{d r}=\frac{i\left(0^{x}\right)}{c}
$$

but $\left.n^{(} / 0^{x}\right)=0 \quad \therefore \frac{\Delta V_{c}\left(0^{x}\right)}{d T}=0$
We have

$$
\begin{equation*}
V_{z}\left(0^{x}\right)=0 ; \quad V_{c}\left(0^{x}\right)=0 \tag{17}
\end{equation*}
$$

FFom /b)

$$
0=50+k_{1}+k_{2}
$$

VR

$$
k_{1}+k_{2}=-50
$$

Now fird $\frac{e V_{c}}{\text { det }}$, frem (G)

$$
\frac{A V_{c}}{d f}=-2.68 \times 10 \mathrm{~K} e^{-2.68 \times 10^{3 t}}-3.73 \times 10 \mathrm{he}^{4} e^{-3.73 \times 10^{4} 4}
$$

eraluate at $t=0$, using $\hat{V}_{c}\left(0^{*}\right)=0$

$$
\begin{array}{r}
0=-2.67 \times 10^{3} k_{1}-3.73 \times 10^{4 k_{2}} \\
0 k_{2}+370 k_{1}+37300 k_{2}=0 \\
{\left[\begin{array}{cc}
1 & 1 \\
2670 & 37300
\end{array}\right]\left[\begin{array}{l}
k_{1} \\
k_{2}
\end{array}\right]=\left[\begin{array}{c}
-50 \\
0
\end{array}\right]}
\end{array}
$$

4.58 con

$$
\begin{aligned}
& k_{1}=-53.9 \quad k_{2}=3.86 \\
& \therefore \sqrt[v_{c}(t)]{ }=50-53.9 e^{-2670 t}+3.86 e^{-37300 t}(7)
\end{aligned}
$$

This is where the problem in the book evils
(a) What value of r will ouse $v_{c}(t)$ to have $\xi=0.3$?
two to equation (4), Ch. Eq,

$$
\begin{equation*}
s^{2}+\frac{R}{L} s+\frac{1}{L C}=0 \tag{8}
\end{equation*}
$$

compare with

$$
\begin{equation*}
b^{2}+2 \xi w_{n} 5+w_{n}^{2}=0 \tag{9}
\end{equation*}
$$

Put the numbers in (8)

$$
b^{2}+\frac{R}{2 \times 10^{-3}} s+1 \times 10^{8}=0
$$

oR

$$
s^{2}+500 R s+1 \times 10^{8}=0 \quad(10)
$$

4,58 cont.

$$
\begin{aligned}
& \text { tompasing }(10) \text { with (s) } \\
& W_{n}^{2}=1 \times 10^{8}
\end{aligned}
$$

$$
h_{n}=10,000 \quad \mathrm{yA} / \mathrm{s}<c
$$

then

$$
\begin{aligned}
& 2 \xi w_{n}=500 R \quad \xi=1,3, w_{n}=10,000 \\
& 2 \times 0.3 \times 10000=500 R \\
& R=\frac{6000}{500}=12 \Omega
\end{aligned}
$$

15)

$$
\frac{d^{2} V_{c}}{\partial t^{2}}+1000 \frac{d V_{c}}{R t}+1 \times 10^{8} V_{c}=50 \times 10^{8}
$$

Use MATLAB D, E, solution mothod to find $V_{c}(t)$,
\gg

$$
\begin{aligned}
& \left.\gg \text { dsolve ('D2v }+6000 * D v+100000000 * v=50 * 100000000^{\prime},{ }^{\prime} v(0)=0^{\prime}, \quad \mathrm{Dv}(0)=0 '\right) \\
& \text { ans }= \\
& 50-50 * \exp (-3000 * t) * \cos \left(1000 * 91^{\wedge}(1 / 2) * t\right)-150 / 91^{\prime} 91^{\wedge}(1 / 2) * \exp (-3000 * t) * \sin \left(1000 * 91^{\wedge}(1 / 2) * t\right)
\end{aligned}
$$


```
q History: Solution of Differential Equation part (b) supplement
% for HW #5, problem 4.58. Office computer, October 21, 2007
% W. Green: Program name solve4_58.m
% dsolve('D2v + 6000*Dv + 100000000*v = 50*100000000', 'v(0) = 0', 'Dv(0) = 0')
% The solution for the above is
t = 0:.00002: . 002;
v = 50-50*exp (-3000*t).* *os(1000*91^(1/2)*t)-150/91*91^(1/2)*exp (-3000*t).*sin(1000*91^(1 K
/2)*t);
% define the following to illustrate the envelope
x1 = 50*(1 - exp(-3000*t));
x2 = 50*(1 + exp (-3000*t));
plot(t, v, t, x1,'--', t, x2,'--')
grid
ylabel('Voltage (volts)')
xlabel('time (sec)')
```

4.61 Work the problem as stated in the text.

Answers: damping coefficient $=20 \times 10^{6}$; undamped resonant frequency $=10 \times 10^{6} \mathrm{rad} / \mathrm{sec}$
Damping ratio, $\xi=2$ (overdamped)
$v(t)=28.87 e^{2.68 \times 10^{6} t}-28.87 e^{-37.32 \times 10^{6} t} V u(t) \quad$ (general solution)

For the following circuit:

By nodal analysis: $c=1.000 \mathrm{p}_{\mathrm{F}} \mathrm{F}$

$$
\begin{aligned}
& y \text { nodal analysis: }=1 \times 10^{-9} \\
& \frac{V}{R}+C \frac{Q v}{\theta t}+\frac{1}{L} \int_{0}^{t} v(t) d t+i=I_{s} \text { (1) }
\end{aligned}
$$

Toke the privative wot time

$$
\begin{aligned}
& \frac{1}{R} \frac{Q v}{A t}+C \frac{Q^{2} u}{e^{2}}+\frac{v(t)}{L}=0 \\
& \frac{Q^{2} v}{A t^{2}}+\frac{1}{R c} \frac{d v}{d t}+\frac{v(t)}{L c}=0
\end{aligned}
$$

with numbers

$$
\begin{equation*}
\frac{Q^{2} v}{d t^{2}}+\frac{1}{25 \times 1 \times 10^{-9}} \frac{e v v}{d t}+\frac{v(t)}{10 \times 10^{-6} \times 1 \times 10^{-9}}=0 \tag{2}
\end{equation*}
$$

4,61

$$
\frac{D^{2} v}{D t^{2}}+40 \times 10^{6} \frac{d v}{d t}+1 \times 10^{14} v(t)=0
$$

By fayt book

$$
\left[\begin{array}{l}
s^{2}+2 \alpha s+\omega_{0}^{2}=0 \\
s^{2}+2 \xi \omega_{n} s+\omega_{n}^{2}=c
\end{array}\right] \text { Char, }
$$

(a) Janponig cuofficiont

$$
\begin{aligned}
& \partial \alpha=40 \times 10^{6} \\
& \alpha=20 \times 10^{6} \\
& \omega_{0}=\omega_{n}=\sqrt{1 \times 10^{14}}=1 \times 10^{7} \mathrm{rad} / \mathrm{sec} \\
& \omega_{0}=10 \times 10^{6} \times 10 / 12 \mathrm{c} \\
& \xi=\frac{\alpha}{\omega_{0}}=\frac{20 \times 10^{6}}{10 \times 10^{6}}=2 \\
& \xi=2
\end{aligned}
$$

(b) Giver $v\left(0^{*}\right)=0 \quad i\left(0^{*}\right)=0$ zhow that $\dot{V}\left(0^{*}\right)=105 \mathrm{~V} / \mathrm{we}$

$$
\begin{aligned}
& \text { Fkom (1) } \\
& \left.\frac{V\left(0^{4}\right)^{7}}{R}+c \frac{Q v\left(0^{\circ}\right)}{d t}+i 10^{\prime}\right)^{\circ}=1 \\
& \frac{d V\left(10^{4}\right)}{d t}=\frac{1}{c}=\frac{1}{1 \times 10^{-9}}=1 \times 10^{9} \mathrm{~V} / \mathrm{sct}
\end{aligned}
$$

4,61
(c) Find the pasticilas solution From Equation (z), the particular solution is

$$
V_{c p}=0
$$

(a) Equation (2) becomes

$$
\begin{aligned}
& \frac{d^{2} v}{d t^{2}}+40 \times 10 \frac{d v(t)}{d t}+1 \times 10^{14} v(t)=0 \\
& s,-37.3 \times 10^{6} \\
& h_{2}=-2.68 \times 10^{6} \\
& v(t)=\hbar, e^{-37.3 \times 10^{t} t}+k_{2} e^{-2.68 \times 10^{6} t} \\
& V(0)=0=K_{1}+K_{2} \\
& \frac{d v}{d t}=-37.3 \times 10^{6} \mathrm{~F}, \mathrm{e}^{-37.3 \times 10^{6} t}-2.68 \times 10^{6} e^{-2.68 \times 10^{6} \mathrm{t}} \\
& \frac{d v(0)}{d t}=1 \times 10^{9}=-37.3 \times 10^{6} \mathrm{~K},-2.68 \times 10^{6} \mathrm{~K}_{2} \\
& 1 k_{1}+k_{2}=0 \\
& 37.3 \times 10^{6} k_{1}+2.68 \times 10^{6} k_{2}=-1 \times 10^{9} . \\
& k_{1}=-28.9, \quad x_{2}=28.9
\end{aligned}
$$

