Desk Coping

ACE 301
HW \#10

wIg

Due: November 29, ${ }^{\bullet} \mathbf{\prime} 07$ revision B

Use engineering paper. Work only on one side of the paper. Use this sheet as your cover sheet, placed on top of your work and stapled in the top left-hand corner. Number the problems at the top of the page, in the center of the sheet. Do neat work. Underline your answers. Show how you got your equations. Be sure to show how you got your answers. Each problem counts 15 points.
(a) On your own
(b) $\mathrm{pf}=.6$ lagging
(c) $\mathrm{P}=27 \mathrm{~kW}$
(d) $\mathrm{Q}=36 \mathrm{kVAR}$
(e) $\mathrm{S}=45 \mathrm{kVA}$
(a) $\mathrm{pf}=.866$ lagging
(b) $\mathrm{P}=173.2 \mathrm{~F}$
(c) $\mathrm{Q}=100 \mathrm{kVAR}$
(d) $\mathrm{S}=200 \mathrm{kVA}$
(5.76) $\mathrm{P}_{\mathrm{A}}=8.82 \mathrm{~kW}, \mathrm{Q}_{\mathrm{A}}=-0.418 \mathrm{kVAR}$ delivered
$\mathrm{P}_{\mathrm{B}}=7.467 \mathrm{~kW}$ absorbed $\mathrm{Q}_{\mathrm{B}}=-3.125 \mathrm{kVAR}$ absorbed
$\mathrm{P}_{\mathrm{R}}=1.353 \mathrm{~kW}$ absorbed
$\mathrm{Q}_{\mathrm{L}}=2.707 \mathrm{kVAR}$ absorbed
(5.78) $\mathrm{Z}=11.62+\mathrm{j} 15.49$ ohms; $\mathrm{R}=11.62$ ohms; $\mathrm{L}=0.0411 \mathrm{H}$
(a) $\mathrm{I}=11.32 \angle-27.97^{\circ} \mathrm{A}$ rms (b) $\mathrm{S}=(10,000+\mathrm{j} 5309) \mathrm{VA}$ from which, $\mathrm{P}=10 \mathrm{KW}, \mathrm{Q}=5309 \mathrm{VAR}$ $\mathrm{S}=11320 \mathrm{VA}$; (c) p.f. $=\cos 27.97^{\circ}=0.8832$ lagging
(5.81 On this problem you need to draw the power triangle for each load, load A and load B.

You will find that $\mathbf{S}_{\mathbf{A}}=11.11 \angle 25.8^{\circ} \mathrm{kVA}, \mathbf{S}_{\mathbf{B}}=15 \angle 36.9 \mathrm{KVA}$. This gives $\mathbf{S}=\mathbf{S}_{\mathbf{A}}+\mathbf{S}_{\mathbf{B}}=26 \angle 32.18^{\circ} \mathrm{KVA}$ Or in rectangular form $\mathbf{S}=(22+j 13.84) \mathrm{kVA}=\mathrm{P}+\mathrm{jQ}$. From this you see that
$P_{S}=22 \mathrm{~kW}, \quad \mathrm{Q}_{\mathrm{S}}=13.84 \mathrm{kVAR}, \quad$ and $\mathrm{S}=26 \mathrm{kVA}$: This seems to be the most direct way to work the problem. However, there are other variations that could be used.
$\operatorname{Pf}=0.8462$ lagging

$$
\begin{equation*}
\mathrm{P}=5000 \mathrm{~W} ; \mathrm{Q}=383.9 \mathrm{VAR} ; \mathrm{pf}=0.9971 \text { lagging } \tag{5.83}
\end{equation*}
$$

5.85 (a) $\mathrm{I}_{\mathrm{rms}}$ (magnitude) $=400 \mathrm{~A} ; \hat{I}=400 x \sqrt{2} \angle-75.5^{\circ} \mathrm{A}$: Note that the original rms line current is 400 A ; The capacitor is suppose to reduce this.
(b) You will find that $\mathrm{Q}_{\mathrm{c}}=-387.3 \mathrm{kVAR}$; The rating of the capacitor is the absolute value of this Or 387.3 kVAR .. The value of $\mathrm{C}=1027 \mu \mathrm{~F}$
(c) With the capacitor you will find that the new $\mathrm{I}_{\text {rms }}$ of the line current is 100 A . So the Line current has been reduced from 400 A , to 100 A . This is quite significant.
why
ERE 301
HAW. \# 10
Fall 3007
5.20

Given the circuit lond below with the indicated spied voltage.

(a) Is the load inductive or capacitive?

Ans: It is inductive because we have tj40.
(b) Determine the pf.

Ans: The pf angle is the name as the angle of
the loAd impedance.

$$
\begin{aligned}
& \vec{z}=(30+j 40)=50 \angle 53.1 \\
& p_{1} f_{1}=\cos 53.1=0.6 \text { lagging } \\
& S^{3}=\frac{\left|V_{1 m_{s}}\right|^{2}}{z^{*}}=\frac{(1500)^{2}}{(30-140)}=45153.1 \mathrm{kVA} \\
& \hat{\xi}=(27+j 36) K V A \\
& \text { (c) } P=27 \mathrm{~kW}(\mathrm{Cl}) Q=36 \mathrm{kVAR} \\
& \text { (e) } S=45 \mathrm{kVA}
\end{aligned}
$$

5.72

Giver

$$
\begin{aligned}
& v(t)=1 \times 10^{4} \sqrt{2} \cos \left(\omega t+10^{\circ}\right) V \\
& i(t)=20 \sqrt{2} \cos \left(\omega t-20^{\circ}\right) A
\end{aligned}
$$

The phanck voltage and cunirt berome

$$
\begin{aligned}
& \hat{V}=1 \times 10^{4} \sqrt{2} \angle 10^{\circ} \mathrm{V} \\
& \vec{I}=20 \times \sqrt{2} \angle-2 i^{\circ} \mathrm{V}
\end{aligned}
$$

1a) Detormine the p.l.
Ans:

$$
\begin{aligned}
& p f=\cos \left(\theta_{V}-\theta_{F}\right) \\
& \theta_{r}=10^{\circ}, \quad \theta_{I}=-20^{\circ} \\
& p f=\cos (10+20)=0.866 \text {, cassing }
\end{aligned}
$$

lagging bersuse the corrent lags the voltage.
(b)

Determine the power:

$$
\begin{aligned}
& P=\frac{|\mathrm{V} /|I|}{2} \cos \left(\theta_{v}-\theta_{z}\right)=1 \times 10^{4} \times 20 \cos \left(30^{\circ}\right) \\
& P=173.2 \mathrm{~kW}
\end{aligned}
$$

(c)

$$
Q=20 \times 10^{4} \sin 30^{\circ}
$$

$$
Q=100 \mathrm{KVAR}
$$

(d) $S=/ r_{\text {ms }} / \mid I_{\text {ms }} /=200 \mathrm{kVA}$
5.76

Determine the power for ese sone shown in the diagram below. Also, state whether each source is delivering on absorbing every

woke with rms

$$
\begin{aligned}
& -240 \angle 50+(1+2) I+220 \angle 30^{\circ}=0 \\
& \dot{Z}_{r n}=\frac{240 \angle 50-220 \angle 30}{1+j 2} \\
& \hat{Z}_{r m s}=36.79 / 52.7 \mathrm{~A} \\
& S_{A d_{A}}=(240 L 50)(36,79(-52.7)=8029,6 L-2.7 \\
& S_{2 d_{A}}=8819.8-j 415.9 \\
& P_{A}=8.82 \mathrm{~kW} \text { del: } Q=-0.416 \mathrm{kV} \text { dod. } \\
& S B=(220 L-150)\left(36.79^{\circ} 1-52.7\right) . \\
& \hat{S}_{3 \text { II }}=(-7466.8+\prime 3123) \mathrm{VA} \\
& P_{B B S}=7.42 \mathrm{KW} \quad \sum_{A B S}=-3.12 \text { VAR }
\end{aligned}
$$

5.76
complex powen to the $(1 / 1 ; 2) \Omega$ lance

$$
\begin{aligned}
& S_{\text {eiR }}=\left|I_{r m,}\right|^{2} Z=(30.79)^{2}\left(1 t_{i} 2\right) \\
& S_{C i n}=1353.5+j 2707 \\
& P_{R}=1.354 k W \\
& Q_{2}=2.707 \text { EVAR }
\end{aligned}
$$

cdect

$$
\begin{aligned}
& \sum S_{A}^{1}+S_{B}=8.82 \mathrm{~kW}-0.41 \mathrm{~b} \text { KVAR } \\
& -7.467 k w+j 3.12 k v \\
& =(1.35+j 2.7) \operatorname{kiA} \\
& P_{\text {sup }}=1.35 \mathrm{~kW} \\
& \left.Q_{\operatorname{sig}}=2.7 k V A R\right] \\
& P_{R}=1.354 * W \\
& P_{2}=2.707 \text { kVAR Check! }
\end{aligned}
$$

5.78

A Lott 3, 220 rrms source supplies power to a lond consisting of a resistance in series with an induc tor.

Fine R mo L
sine

$$
\begin{aligned}
& \stackrel{\operatorname{Since}}{S^{\prime}}=\frac{\left.\mid V_{r m s}\right)^{2}}{z^{*}} \\
& S=\frac{V_{r m s}^{2}}{z} \\
& z=\frac{22 \gamma^{2}}{2500}=19.36, \cdots \\
& \cos \theta=\frac{p}{S}=\frac{1500}{2500}=0.6 \\
& \theta=\cos 0.6=53.1^{\circ} \text { lansing } \\
& \text { since we have } \\
& \begin{array}{l}
\text { ce we have fort of } \\
\text { iwo that, } \\
\text { the lave. }
\end{array} \\
& z^{n}=19.36153 .1^{\circ}=(11.6+j 15.48) \mathrm{m} \\
& R=11.6 \Omega \\
& w L=75,48 \\
& \angle=\frac{15.48}{2 \pi \times 60}=0.041 \mathrm{H}
\end{aligned}
$$

5.79

Torsibee the cirenit showr below.
(a) Fine the coment I.
(b) Fins the powes, reactive powes, Apparent pown dalivend by the sownce.
(c) Find the p.f.

(a)

$$
\begin{aligned}
\hat{I}_{\text {rms }} & =\frac{1000}{100}+\frac{1000}{\sqrt{188.5}} \\
\bar{I}_{\text {rms }} & =(10-j 5.31) \mathrm{A}=11.32 \angle-27.97^{\circ} \mathrm{A}
\end{aligned}
$$

(b)

$$
\begin{aligned}
& 3_{\text {souree }}=(1000(0)(11.32 \angle 27.97) \\
& \frac{1}{5}=11320 \angle 27.57 \mathrm{VA} \\
& S_{\text {somee }}=10,000+\dot{j} 309 \\
& \therefore P=10 \mathrm{~kW}, Q=5.31 \text { KVAR } \\
& S=11.32 \mathrm{KVA}
\end{aligned}
$$

(c) Pifi $=\cos 27.47=0.8832$ lagging
5.81

Two loads are converted in parallel across a / KVrms Got lire as shown below.

(a) Find the power, reactive power cend apparent pourer delivered by the sames
(b) What is the power fact seen by the some e
(a) Draw the pone r triangle for lax o A and Qetermuin $\hat{\delta}_{A}$.

$$
\begin{aligned}
\cos \theta & =.9 \\
\theta & =25,8^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
& \cos \theta=.9=\frac{10 \mathrm{k}}{\mathrm{~s}} \\
& s=\frac{10 \mathrm{k}}{.9}=11.11 \mathrm{kVA} \\
& \hat{S}_{A}=11.11 \angle 25.8^{\circ} \mathrm{kVA}
\end{aligned}
$$

5.81 continued
power triangle for lone B

$$
\begin{aligned}
\cos \theta & =.8 \\
\theta & =36.9^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
& s=15 k V A \text { so, } \\
& \hat{S}_{B}=(15 \angle 36,9 \quad k V A) \\
& \hat{S}=3_{A}+\hat{S}_{B}=[(11.11 \angle 25.8)+(15 \angle 36.9)] \mathrm{kUA} \\
& \hat{S}=26 \angle 32.18^{\circ} \text { oVA }=(22+j 13.84) E V A \\
& \hat{S}=P+j Q \\
& \text { Ans: } \quad \begin{array}{l}
P=22 \mathrm{~kW} \quad Q=26 \mathrm{kVA} \\
S=13.84 \mathrm{kVAR}
\end{array} \quad \underline{Q=2} \\
& S=26 \mathrm{KVA}
\end{aligned}
$$

(D) PDf. $=\cos 32.18=0.8464$ lagging
5.83

For the circuit below, find the power, the reactive power canc the apparent power. Fin's the power factor.

$$
\begin{aligned}
& P=\frac{\left(V_{\text {ms }}\right)^{2}}{R}=\frac{500^{2}}{50}=5000 \mathrm{~W} \\
& Q_{L}=\frac{V_{\text {rms }}^{2}}{X_{2}}=\frac{500^{2}}{188.5}=1326.26 \\
& Q_{e}=\frac{V_{\text {rms }}^{2}}{X_{c}}=\frac{500^{2}}{-265.3}=-942.33 \\
& Q=Q_{L}+Q_{c}=1326.26-9-12.33 \\
& Q=383.93 \\
& \hat{S}=(5000+j 383.93) V A=5014.72 \angle 4.39 \\
& S=5014.7 V A \\
& P . F_{1}=0.9971 \text { (aging }
\end{aligned}
$$

5,85
consiclen the following circuit

(a) Find the phtsor cuncat I, use the powen triangle to find \hat{s}

$$
\begin{gathered}
\cos \theta=.25 \\
\theta=75.5^{\circ}
\end{gathered}
$$

$$
\begin{aligned}
& \cos \theta=.25=\frac{100 \mathrm{~K}}{\mathrm{~s}} \\
& s=\frac{100 \mathrm{~K}}{.25}=400 \mathrm{kVA} \\
& \hat{S}=400 \angle 75.7 \mathrm{kNA}=\hat{V}_{\text {vms }} \times I_{\text {Vms }}^{*} \\
& \hat{I}_{\text {vms }}^{*}=\frac{400175.7 \mathrm{kVA}}{1 \mathrm{kLO}}=400175.7 \\
& \hat{I}=4001-75.7^{\circ} \mathrm{A} \text { vus }
\end{aligned}
$$

(b) Finde c to bring the pf to unity.
5.85 cont
$5.85-2$

FINQ Q from the earlien triangle,

$$
\begin{aligned}
& \frac{Q}{S}=\sin 75.5 \\
& Q=5 \sin 75.5=400 \times \sin 75.5 \mathrm{kVAR} \\
& Q=387.26 \mathrm{FVAR}
\end{aligned}
$$

so we know that

$$
\begin{gathered}
\left|-\omega C V_{V m s}^{2}\right|=387.26 \mathrm{~N} \\
C=\frac{387.26 k}{(1000)^{2} \times 377} \\
C=1030 \mu \mathrm{~F}
\end{gathered}
$$

(2) Rating of the eapariter in KVAR is 387.26 KVAR
(d) The new live coment will be

$$
\begin{aligned}
& S=P x_{j} Q=100 \mathrm{~kW}=V_{\text {rms }} I_{\text {rams }} \\
& I_{V m s}=\frac{100 \mathrm{~K}}{1 \mathrm{~K}}=100 \mathrm{~A}
\end{aligned}
$$

Reduese the cmunt tram touA tc 100 Am facton of 4 $I^{2} R$. loss redue-s by a fretor of 16 .

