wlg
Due: December 4, '07 revision A
Use engineering paper. Work only on one side of the paper. Use this sheet as your cover sheet, placed on top of your work and stapled in the top left-hand corner. Number the problems at the top of the page, in the center of the sheet. Do neat work. Underline your answers. Show how you got your equations. Be sure to show how you got your answers. Each problem counts 15 points.

Linear Transformers

(11.X1) Determine the voltage V_{0} of the linear transformer given below. Ans: $\mathrm{V}_{\mathrm{o}}=0.6 \angle-90^{\circ} \mathrm{V}$

Figure 11.X1: Circuit for problem 11.X1
(11.X2) In the linear transformer circuit below, calculate the input impedance and the current I_{1}. Take $\mathrm{Z}_{1}=(60-\mathrm{j} 100)$ ohms, $\mathrm{Z}_{2}=(30+\mathrm{j} 40)$ ohms, and $\mathrm{Z}_{\mathrm{L}}=(80+\mathrm{j} 60)$ ohms. Ans: $\mathrm{Z}_{\mathrm{IN}}=100.14 \angle-53.1^{\circ} \mathrm{ohms}, \mathrm{I}_{1}=0.5 \angle 113.1^{\circ} \mathrm{A}$

Figure 11.X2: Circuit for problem 11.X2

Ideal Transformers

(15.60) Work for $\mathrm{N}_{1} / \mathrm{N}_{2}=10$ only: Ans: $\mathrm{V}_{2 \mathrm{~ms}}=10 \mathrm{~V}, \mathrm{I}_{2 \mathrm{~ms}}=0.1 \mathrm{~A}, \mathrm{P}_{\mathrm{L}}=1 \mathrm{~W}$
(15.63)
(a) $\mathrm{I}_{1}=6 \angle 30^{\circ} \mathrm{A} ; \quad \mathrm{V}_{2}=400 \angle 0^{\circ} \mathrm{V}$
(b) $\mathrm{P}_{\mathrm{S} 1}=-519.6 \mathrm{~W}$

$$
\mathrm{P}_{\mathrm{S} 2}=519.6 \mathrm{~W}
$$

power is taken from the voltage source and delivered to th current source
(c) $\mathrm{I}_{1}=6 \angle-150^{\circ} \mathrm{A} \quad \mathrm{V}_{2}=400 \angle 180^{\circ} \mathrm{V}$
$\mathrm{P}_{\mathrm{S} 1}=519.6 \mathrm{~W} \quad \mathrm{P}_{\mathrm{S} 2}=-519.6 \mathrm{~W}$
Power is taken from the current source and delivered to the voltage source
(15.65)
(a) $\mathrm{I}_{1}=30 \angle 0^{\circ} \mathrm{A}$;
(b) $\mathrm{I}_{1}=10 \angle 0^{\circ} \mathrm{A}$
ECK 301
HaW HI
LineAR TEQnstoremens
(11.X1) Determine the voltage V_{0} of the linear transformer given below. Ans: $\mathrm{V}_{\mathrm{o}}=0.6 \angle-90^{\circ} \mathrm{V}$

Assume currents I_{1} and I_{2} as shown above, Write krilL equishois around mesh, and mesh 2.

$$
\begin{aligned}
& (4+j 8) I_{1}+\dot{I_{2}}=6 L 90 \\
& j I_{1}+(10+i 5) I_{2}=0 \\
& {\left[\begin{array}{l}
(4 j g)(0+j 1) \\
(0 t j)(10+j 5)
\end{array}\right]\left[\begin{array}{l}
I_{1} \\
I_{2}
\end{array}\right]=\left[\begin{array}{c}
6 L 90 \\
0
\end{array}\right]} \\
& I_{2}=0.06 L-89.4^{0} A \\
& V_{0}=10 \hat{I}_{2} \\
& V_{0}=0.6 L-89,4^{\circ} \mathrm{V}
\end{aligned}
$$

(11.X2) In the linear transformer circuit below, calculate the input impedance and the current I_{1}. Take $Z_{1}=(60-j 100)$ ohms, $Z_{2}=(30+j 40)$ ohms, and $Z_{L}=(80+j 60)$ ohms.
Ans: $\mathrm{Z}_{\mathrm{IN}}=100.14 \angle-53.1^{\circ} \mathrm{ohms}, \mathrm{I}_{1}=0.5 \angle 113.1^{\circ} \mathrm{A}$

$$
\begin{aligned}
& \text { We have shown that } \\
& Z_{\text {in }}=Z_{1}+j 20+\frac{(\omega m)^{2}}{j 40+Z_{2}+Z_{2}} \\
& Z_{\text {in }}=60-j 100 t j 20+\frac{25}{j 40+30 j_{j} 40+80+j 60} \\
& Z_{\text {in }}=60-j 80+\frac{25}{110 t_{i} 140} \\
& Z_{\text {in }}=100.14 \angle-53.10 \\
& I_{1}=\frac{50 \angle 60}{100.14 \angle-53.1}=0.5 \angle 113.1^{\circ} \mathrm{A}
\end{aligned}
$$

Idonl Teans formens
(15.60)

Considee the ciremit bolow (a) Find the secombany voltase Varms, Fince the secordary cincext I.

$$
P_{100} \text { if } N_{1} / N_{2}=10
$$

Reflect the primang to the serovolaiy

$V_{2 \mathrm{rms}}=1010 \mathrm{r}_{\mathrm{rms}}$

$$
\begin{aligned}
& I_{20, m s}=\frac{1020}{100}=0.110^{\circ} \mathrm{A} \mathrm{Yms} \\
& P_{100}=\left|I_{2, \mathrm{Ms}}\right|^{2} \times 100=1.11^{2} \times 100 \\
& P_{100}=1 \mathrm{~W}
\end{aligned}
$$

(15.63)

Tonsider the circurt shown in the diagianm below.
(a) Determive the values of $I_{1} \leqslant V_{2}$.
(b) For each of the sommes, dotmive the avenage powas cone state whether the powen is delivenol by or absorbee by the sance
(c) Mre the dot on the axcurveang to the bottum ere of the coit and repect (a) and (b).

Refle, t the seeoneloung to the primany

$$
20010 \mathrm{~V}
$$

15.63 cortinued
(b) $P_{s,}=\frac{200 \times 6 \times \cos 30}{2}=519.6 \mathrm{~W}$

$$
\begin{aligned}
& P_{32}=-\frac{400 \times 6 \times \cos 30}{2}=-519 \mathrm{~W} \\
& \text { sappli00 }
\end{aligned}
$$

This moans fold sowee I is jugplyivg slsw to the cunert somee.
(c) Revase ore of the dets. This mate, the cument sowce anow point up had still has value of $6 \angle 30^{\circ}$.
(4) so $I_{1}=-\angle \angle 30=6 \angle-150^{\circ} \mathrm{A}$

$$
V_{2}=-2 V_{1}=-400 \mathrm{~V}=400 L 180
$$

(d)

$$
P_{5,}=\frac{200 \times 6}{2} \times \cos (-150)=-519.6 \mathrm{~W}
$$

$$
\begin{aligned}
& P_{\text {s2 }}=\frac{400 \times 6 \cos \left(180-\left(-150^{\circ}\right)\right.}{2}=519,6 \mathrm{~W} \\
& \text { suppliced } \\
& \text { somee } 2 \text { supplies } 5 / 9.6 \mathrm{to}
\end{aligned}
$$ somee 1 .

(15,63) And then way to five I, and V_{2} is straight matyeis, no reflections. Looking at the original trunstamen we have. To both dots up ap

$$
V_{1}, V_{2}, I_{1}, I_{2} \text { as indicated }
$$

$$
\begin{aligned}
& V_{1}=20020^{\circ} \mathrm{V} \\
& \frac{V_{2}}{V_{1}}=2 \\
& V_{2}^{12}=2 \mathrm{~V}=400 \angle 0^{\circ} \mathrm{V} \\
& V_{1}=+n=2 \\
& I_{2} \\
& I_{1}=2 I_{2}=G \angle 30^{\circ} A
\end{aligned}
$$

(15.65)
(a) Reflect the resistance and voltage sours to the left, in the ojicnit below, cine find II.
(b) Repent (a) but with on of the dots reversed.

$$
I_{1}=\frac{10020+5020}{5}=30 \angle 0^{\circ} \mathrm{A}
$$

16) Reversing one of the dots changes the polarity of the 2510 voltage some e.

$$
I_{1}^{I}=\frac{10010-5010}{5}=1010^{\circ}+1
$$

