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Basic Concepts of Analog Filters:

A Handshake

Background: Four filter shapes are normally defined in basic electric filters.

These are shown in Figure 1: they are called ideal filters.
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Figure 1: Profile of ideal filters.
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Ideal filters are not realizable. Their shape can be approached as the order of the

filter becomes very large. Normally, one accepts a filter that is not ideal and has

a manageable order. Profiles of more realistic filters are shown in Figure 2.



Figure 2: Typical filter profiles: 8" order Butterworth. See the Appendix.
pPp

Analytically, filters are defined from transfer functions. A transfer function

expressed in factor form might appear as in Equation (1).

hs) K(s-z)s-2)..(s-2z,)
Y,(s) (s=p)s—p,)..(s—p,) Eq (1)

The roots of the numerator are called zeros while roots of the denominator are

called poles. In this case there are m zeros and n poles. Equation (1) may also

be expressed in polynomial form. This form is shown in Equation (2).



Y,(s) K[s" +a, s""+... tas+a,]
Y, (s) s"+b_ 5" +.. +bs+b,

= G(s) Eq (2)

The order of the denominator polynomial of Equation (2) is said to be the order
of the transfer function (nth order in this case) and also called the order of the
filter.

To find the frequency response corresponding to G(s) in a laboratory setting,
the function Yi(s) (actually yi,(t)) becomes the output signal from a signal
generator that can supply sinusoidal waveforms. For each frequency input, the
response (magnitude and phase) are recorded. A display of the magnitude vs
frequency and phase vs frequency becomes the frequency response.

To find the frequency response with a computer, one replaces s by jo and
typically runs a program to determine the absolute value of G(jo) and the angle
of Gjw)as 0 <® < .

As an example, a second order low pass Butterworth filter with a cutoff of w

= 10 rad/sec is given by the expression,

Yy(s) 100
Y, (s) s°+14.145+100 Eq ()

The MATLAB function H = freqs(Num,Den,w) can be used to obtain the
frequency response. This response, for both the magnitude and phase is shown

in Figure 3 of the following page.

Equation (3) may be rearranged to the following form;



(s> +14.145 +100)Y, (s)=100Y,, (s) Eq (4)

Equation (4) can be expressed as a differential equation as below.

d’y,(®) dy, (t)
__61_37_+14.14——2t——+100y0(t)=100yin(l‘) Eq (5)

Let,

Yiu ()= A cos(w?) Eq (6)
To solve for the steady state solution (particular solution) of Equation (5) fori
sinusoidal inputs, we assume Y;, (£)=» (¢). An input of the following form
shown in Equation (7) is assumed.

Ve, = B, cos(w;t) + B, sin(w,?) Eq (7)

This leads to the solution,
v (£)=C, cos(wt+6,) Eq (8)
Ve (= Zypi (1) = Z C, cos(wit +6,)
i=1 i=1
For every w=w,, we get a solution for y, (©). The frequency response is a
display of the C; and the 0;. The C; are magnitudes and represent the magnitude

profile of what we call a filter. The 6; are the phase angle of the filter. Thus, the

following statement can be made.



An analog frequency respbnse (filter) is a graphical solution of

a linear differential equation which has sinusoidal forcing

cos(wit +

and output (C)

Y,

i

6) 1<i<w,

Junctions, (A)cos(w

itude and the 6. are the filter phase.

The C; are the filter magn
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(a) magnitude of response
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(b) phase of response

Magnitude and phase for a filter. 2" order analog Butterworth filter.
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Figure 3



We now present an example that shows how this definition is used.
Example 1:
The signal y;(t) = 4 cos10t is applied to the filter shown in Figure 4.
Determine yo(t).
Solution: From the filter magnitude and phase one sees that at ® = 10
rad/sec, the magnitude from the filter response is 0.71 and the phase angle
is —90°. This means that

4x%(0.7)cos(10t — 90°) Eq (9)
One seldom ever writes that this is the solution for a differential equation
for ® = 10 rad/sec (but that is exactly what it is). Rather, one thinks in
terms of what happens to various signals, with frequency ranging from
0 < ® <, that are applied to the filter. The filter response of Figure 4
gives the answer as to what happens.

The next level is learning how to design filters that give desired
shapes. An enormous amount of work has been done in the filtering
area. This work was developed for analog filters but is easily extended to
digital filters. At any rate, we usually rely on information provided by

standard methods available from,

Butterworth Design Chebyshev I, II Design

Elliptic Design Park-McCellan Design



(a) magnitude (b) phase

Figure 4: Frequency response information for a filter.
As a simple example on designing a low pass filter of the Butterworth form, we
consider the following example.
Example 2:
Design a Butterworth filter that has the property that

(i)  no signal less than 10 Hz is attenuated more than 3 dB

(i1)  all signals above 25 Hz are attenuated by at least 20 dB
Give the filter transfer function and show the frequency response.
Solution: When given specifications, such as the above, it is a good idea to
sketch a specification diagram. This diagram has been prepared and is shown in
Figure 5. The program used for designing the filter, entirely within MATLAB,
is shown in Figure 6. The function buttord is used to determine the order of the

filter needed to meet the specifications. In this case a 3 order filter was required.



Next, the function butter was used to determine the transfer function, in this
case, Num, Den. Num, Den are used as the input for freqs to determine the
frequency response of the filter.

The frequency response resulting from the design is shown in F igufe 7. The
 specification diagram lines have been superimposed on the plot to show that the

filter meets specifications.

Figure 5: Specification diagram for Example 2.



% example to determine the order of a filter

% to meet specifications and show the filter

% response: program butter_search.m ECE 301,
% Fall 2002, wlg, office computer

N = buttord(10,25, 3, 20,'s");
[Num,Den] = butter(4,10,'s");

w = 0:.05:60;
[H,w] = freqs(Num,Den,'s");
Hmag = abs(H);
plot(w,Hmag)
grid
axis([0 40 0 1.21])
title('3th Order Butterworth Filter that meets specs of Example2')
ylabel("Magnitude (absolute value)')
xlabel('Frequency (rad/sec)")

Figure 6: MATLAB used for designing filter for Example 2
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Figure 7: Filter response for Example 2.



Transfer Functions and Filters: The “building” of filters from given

transfer functions is not an easy task, at least not in the general case. People

have devoted their lives to this subject, under the heading of Network Synthesis.

We will only concern ourselves with two of the simplest filters and build a
circuit for each. The two filters are first order low pass and high pass.

A Low Pass Filter: Consider the RC circuit show in Figure 8. We first

derive an expression for the transfer function of Vo(s)/Vin(s) using the voltage

NN
+ R

Vin(s)

+
L é: Vo(s)
sC

Figure 8: A basic first order low pass filter.

divider rule of basic circuits. We have,

Vo(s)  1/sC __ 1 1/RC
Va(s) R+1/sC  1+sRC s+1/RC

Eq (10)

The magnitude profile of this filter fits that of a low pass filter. The cut-off
point (-3dB point) is located at @ = I/RC, One only must select the cut-off
frequency and satisfy w=1/RC. The normal case 1s for C to be specified and

then R can be calculated. This is a simple design. This first order low-pass

filter is important in signal processing. Many digital filters today are



aliasing, one must provide an analog guard filter on the incoming data stream to
the computer. The first order low-pass filter plays this role.

A High Pass Filter: Interchanging the positions of the resistor and capacitor

in the previous circuit give the filter of Figure 8. A little though will show that

the response of this filter fits that of a high pass response.

||
H
+ 1/sC +

Figure 7: A basic first order high pass filter.

The transfer function of the filter is,

Vo(s)= R _ SRC _ Ky Ea (11
V.(s) R+1/sC sRC+1 s+1/RC q(11)

The filter cut-off is a w = 1/RC. One selects the desired high frequency cutoff |

point and solves for R when C ‘is given (C is usually the given parameter).
These notes give just a brief introduction to analog filtering, a handshake.
For the most part, filtering today is done digitally. However, it is not difficult to

take the start presented here and venture on to digital filters. Good luck.



Appendix

The MATLAB programs used for producing the

below.
% basic filter profiles
% program name: filter_profile.m

%{nhp,dhp]=butter(12,30,high’,'s");
%w=0:.1:40;

%Hhp = freqs(nhp,dhp,w);
%Hmaghp = abs(Hhp);

%plot(w, Hmaghp,'s")

Yogrid

%axis([0 40 0 1.6])
%jylabel('Magnitude')
%xlabel('Frequency')

%[nlp,dlp]=butter(8,10,'s");
%w=0:.1:40;

%Hlp = freqs(nlp,dlp,w);
%Hmaglp = abs(Hlp);
%oplot(w, Hmaglp,'s")
Ygrid

Yoaxis([0 40 0 1.6])
%ylabel('Magnitude')
%oxlabel('Frequency')

%{[nbp,dbp]=butter(8,[12,26], bandpass’,'s");
%w=0:.1:40;

%Hbp = freqs(nbp,dbp,w);

%Hmagbp = abs(Hbp);

%oplot(w, Hmagbp,'s")

%grid

%oaxis([0 40 0 1.6])

%ylabel('"Magnitude")

%oxlabel('Frequency')

[nsp,dsp]=butter(8,[12,28],'stop",'s");
w=0:.1:40;

Hsp = freqs(nsp,dsp,w);

Hmagsp = abs(Hsp);

plot(w, Hmagsp,'s")

grid

axis([0 40 0 1.6])
ylabel('Magnitude’)

xlabel('Frequency')

profile of typical filters is given



