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ABSTRACT
With the ever-growing deployment of Qi wireless charging for
mobile devices, the potential impact of its vulnerabilities is an in-
creasing concern. In this paper, we conduct the first thorough study
to explore its potential security and privacy vulnerabilities. Due to
the open propagation property of electromagnetic signals as well
as the non-encrypted Qi communication channel, we demonstrate
that the Qi communication established between the charger (i.e., a
charging pad) and the charging device (i.e., a smartphone) could be
non-intrusively interfered with and eavesdropped. In particular, we
build two types of attacks: 1) Hijacking Attack: through stealthily
placing an ultra-thin adversarial coil on the wireless charger’s sur-
face, we show that an adversary is capable of hijacking the com-
munication channel via injecting malicious Qi messages to further
control the entire charging process as they desire; and 2) Eavesdrop-
ping Attack: by sticking an adversarial coil underneath the surface
(e.g., a table) onwhich the charger is placed, the adversary can eaves-
drop Qi messages and further infer the device’s running activities
while it is being charged.We validate these proof-of-concept attacks
using multiple commodity smartphones and 14 commonly used
calling and messaging apps. The results show that our designed hi-
jacking attack can cause overcharging, undercharging, and paused
charging, etc., potentially leading to more significant damage to
the battery (e.g., overheating, reducing battery life, or explosion).
In addition, the designed eavesdropping attack can achieve a high
accuracy in detecting and identifying the running app activities
(e.g., over 95.56% and 85.80% accuracy for calling apps and mes-
saging apps, respectively). Our work brings to light a fundamental
design vulnerability in the currently-deployed wireless charging
architecture, which may put people’s security and privacy at risk
while wirelessly recharging their smartphones.
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1 INTRODUCTION
Wireless charging is making inroads in the mobile and Internet of
Things (IoT) industries as it offers the promise of increased mobility
and freedom while charging devices. For instance, Qi-certified [44]
wireless chargers for smartphones have become common in various
locations around the home, workplace, hotels, airports, and coffee
shops [4]. Plugless [34] offers wireless charging for many of the
electrical vehicles on the road today. Medium Power Standard [6]
supports wireless power delivery to portable tools (e.g., electric
drills), robotic vacuum cleaners, drones, and e-bikes. In addition,
many companies, such as Powermat [35] and WiTricity [46], pro-
vide wireless power solutions for medical implants and diagnostic
instruments, etc.

With the ever-growing deployment of such wireless charging
systems, it is essential to have a deep understanding of their vul-
nerabilities and the severity of the associated risks. In this paper,
we dissect the fundamental vulnerabilities underlying Qi wireless
charging standard [44] for mobile devices and reveal a set of se-
vere threats which may put people’s security and privacy at risk in
practice. We believe such a vulnerability analysis can not only pri-
oritize required mitigations in wireless charging for mobile devices
but also shed light on the potential security and privacy issues of
other wireless power transfer systems/standards which share many
common technologies with Qi standard, such as the Ki Cordless
Kitchen Standard [5] and the Medium Power Standard [6], etc.

Prior Research on Charging Attacks. Existing efforts have
mainly focused on exploring the vulnerabilities of wired charging
attacks. For instance, existing studies [23, 24, 28, 42, 50, 51] have
shown that wired charging stations could expose users to serious
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Figure 1: Illustration of the discovered privacy and security
threats of Qi wireless charging.

privacy threats, ranging from deploying malware on the smart-
phones to inferring the browsing activity (i.e., which webpages are
loaded) and exfiltrating privacy data (e.g., IMEI, contacts’ phone
number, and chatting records). As for wireless charging systems,
although a survey paper [27] briefly mentioned the possibility of
eavesdropping attacks (e.g., stealing the identity of the charging
device) and man-in-the-middle attacks (e.g., a malicious device ma-
nipulates charging status), only initial thoughts have been provided,
with no further discussion or technical solutions proposed. A recent
study QID [49] showed the possibility of identifying different Qi-
compliant smartphones while being wirelessly charged. However,
this work only focused on the device identification while ignor-
ing other potential vulnerabilities in Qi wireless charging systems.
Moreover, denial-of-charging attacks (a.k.a, jamming attacks) have
been proposed against a variety of wireless rechargeable sensor
networks [25, 32, 33]. However, none of these attacks considered
Qi protocol for mobile devices. To the best of our knowledge, there
has yet to be research focusing on exploring the feasibility of a
more severe attack where the adversary could interfere with and
even take over the charging process.

Qi and its Possible Vulnerabilities. Qi, developed by Wire-
less Power Consortium (WPC), is the leading wireless charging
standard for providing 5-15 watts of wireless power transfer to
portable mobile devices [44]. As illustrated in Figure 1, the charger
(e.g., a charging pad) and the charging device (e.g., a smartphone)
have primary and secondary coils, respectively. During the power
transfer phase, the primary coil generates an electromagnetic field
that induces a current in the secondary coil to transfer energy. In ad-
dition, to allow the charging device to take control of the charging
procedure, Qi specifies interoperable wireless power transfer and
data communication between the charger and the charging device.
The charger thus is able to adjust the transmit power density as
requested by the charging device. However, there exists two funda-
mental vulnerabilities: (1) No encryption scheme has been used to
secure the data communication channel, making the transmitted
data (a.k.a., Qi messages) more susceptible to being interfered with
or eavesdropped; and (2) The requested power transfer density of
the charging device is highly correlated with the device’s activities
(e.g., receiving messages while being charged). This opens opportu-
nities for the adversary to detect and identify the charging device’s
activities using the eavesdropped Qi messages as well as the in-
ductive voltage of the charger. We describe how the adversary can
leverage these vulnerabilities to launch attacks in the perspectives
of security and privacy threats as follows:

Security Threats. Due to the open propagation property of
electromagnetic signals, using the magnetic field to deliver Qi mes-
sages has fundamental vulnerabilities. From a security perspective,
we show the potential of hijacking the communication channel by
stealthily placing an adversarial coil between the charger and the
charging device. Through a well-crafted alternating current acting
on the adversarial coil, the adversary can inject arbitrary malicious
Qi messages so as to take control of the entire charging process,
such as starting/terminating charging, manipulating the amount of
power being transferred per charging cycle, etc. As a consequence,
the adversary can cause overcharging, undercharging, pause charg-
ing, which may reduce charging efficiency, battery life and cause
overheating and even an explosion.

Privacy Threats. The Qi wireless charger needs to adjust its
transmit power density to meet the charging device’s requested
amount according to the received Qi messages (more details are
in Section 2). As all the Qi messages are transmitted via amplitude
modulation (AM) in a non-encrypted form, we show that they can
be easily eavesdropped by measuring the induced voltage on a
nearby hidden adversarial coil (e.g., stuck underneath the surface
on which the charger is placed). More importantly, Control Error
messages (introduced in Section 2.2) indicate the difference between
the actual transmit power density and the device’s requested one,
which would lead to lots of fluctuations while the charging device
changes its status or is triggered by an activity such as turning
on/off the screen, receiving an incoming phone call or a pop-up
notification from an app. This is because when an activity is trig-
gered while charging, the battery will charge at a slower rate than
inactive to allow enough power for the ongoing usage [38]. As
different activities associated with different apps rely on distinct
sets of hardware modules, we experimentally demonstrate that
they do induce identifiable power-consumption patterns which are
reflected on the transmitted Qi messages and the inductive voltage
sensed by the adversarial coil. Leveraging this side-channel, the
adversary can demodulate Qi messages and identify whether the
charging device receives a message notification, a phone call, or
the screen is manually turned on by the user. Additionally, the
adversary can further identify the specific apps (e.g., WhatsApp,
Viber, and Twitter) triggering the activities.

Our main contributions are summarized as follows:

• To the best of our knowledge, we conduct the first thorough vul-
nerability assessment of Qi wireless charging to identify common
malicious threats and the associated risks, which we believe is
an essential step to prioritize required mitigations.

• Relying on a hidden adversarial coil stuck on the charger’s sur-
face, our validation experiments demonstrate that the adversary
can completely take control of the charging process through
injecting deliberately manipulated Qi messages in the commu-
nication channel, which may lead to more severe consequences
(e.g., terminate the charging process, reduce battery life, over-
heating, or even an explosion).

• Due to the non-encryption characteristic of the communication
channel, we show that the Qi messages can be non-intrusively
snooped by simply sticking an adversarial coil underneath the
surface on which the charger is placed. These messages carry a
variety of sensitive information, such as device ID, charging state,
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Figure 2: Overview of Qi wireless charging protocol.

and control error information, which highly correlates with the
charging device’s activities.

• Relying on the inductive voltage of the adversarial coil and its
derived Qi messages, we validate these proof-of-concept attacks
using multiple commodity smartphones. The results demonstrate
that we can detect and identify phone calls from 4 most com-
monly used calling apps and phone notification messages from 10
messaging apps with high accuracies of over 95.56% and 85.80%
accuracy, respectively.

• We analyze and evaluate several defense mechanisms including
frequency-based hijacking signal detection and chaotic noise
addition that can mitigate the effects of the proposed attacks. A
few more potential directions about defense are also discussed.

2 BACKGROUND
2.1 Qi Wireless Charging
Generally, the charging process involves two main components: a
power transmitter (e.g., a charging pad) and a compatible power
receiver (e.g., a smartphone). Relying on the oscillating electromag-
netic field, the power can be transferred wirelessly between the
two coils (i.e., primary coil and secondary coil) embedded in the
power transmitter and receiver, respectively. Specifically, an alter-
nating current in the primary coil produces an oscillating magnetic
field which in turn induces an alternating current in the secondary
coil in close proximity. By attaching a load (e.g., a battery) to the
secondary coil, the induced alternating current can be used for
charging purposes.

To enable interoperable and efficient wireless power transfer, Qi
allows the power receiver to be in control of the charging procedure.
The Qi-compliant transmitter is capable of communicating with
the receiver and adjusting its transmit power density as requested
by the receiver. A systematic overview of Qi wireless charging
protocol is illustrated in Figure 2. Specifically, it has four different
phases as follows:

Selection. The transmitter continuously monitors its surface for
the presence of any object. If the presence of an object is detected,
the transmitter will move to the Ping phase and also send out an
acknowledgment (ACK) signal to inform the receiver to move to
the next phase.

Preamble ChecksumMessageHeader

11 bits 11 bits1 – 27 bytes11 – 25 bits
Synchronization Type & Size Qi Message Integrity Checking

1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 0 0 0 0 0 1 1 0 1 1 1 . . . . 0 0 0 1 0 0 0 1 0 1 1 0 0 0 1

(a)

0
Start

1
𝑏!

1
𝑏"

0 0 000 0 1 1
Stop𝑏# 𝑏$ 𝑏% 𝑏& 𝑏' 𝑏(

8 Data bits

Parity

Value = 0x03 (Type: Control Error; Size: 1)

0.5ms

(b)

Figure 3: Illustration of the Qi communication packet: (a)
the format of the Qi communication packet; and (b) an ex-
ample of the control error packet’s Header.

Ping. The transmitter determines whether the detected receiver
is in need of power. If the receiver has a need for power, the receiver
will send a Signal Strength packet which indicates the strength of the
signal (i.e., how well the two coils are coupled) to the transmitter.

ID & C. The receiver sends the ID & C packets which carry
its specific manufacturer, model, and configuration information to
the transmitter. If the transmitter agrees to transfer power to the
receiver, the Power Transfer (PT) phase would be reached.

PT. In order to decrease the internal power consumption and
reach the best operating conditions in terms of power transfer
efficiency, Qi makes the receiver take control of the system [44].
Specifically, the receiver needs to send Control Error messages,
which indicate the difference between the requested operating
point (e.g., load voltage) and the actual one to the transmitter. After
receiving the control error message, the transmitter would adjust
the primary coil’s alternating current, thereby making the transmit
power density match the receiver’s need and satisfying its battery
management’s requirements.

2.2 Qi Message
In the Qi standard, all the communication packets (e.g., identifi-
cation, configuration, and control error) transmitted between the
transmitter and the receiver are in a non-encrypted form and are
generated by means of load modulation. Specifically, the receiver
changes its load through switching a capacitor between the sec-
ondary coil and (full bridge) rectifier, which would induce changes
in the primary coil’s alternating current.

The format of Qi communication packets is shown in Figure 3(a).
It contains a Preamble for synchronization, aHeader which indicates
the type and size of the packet, a Message which contains the Qi
message, and a Checksum that aims to check the integrity of the
packet. Save for the Preamble consisting of 11-25 all ONE bits, the
other three fields use an 11-bit asynchronous serial format. They
all begin with a Start bit set to ZERO and end with a Stop bit set
to ONE. Eight data bits (LSB first) and a Parity bit are followed
by the Start bit, which are used to carry the data and check the
data’s integrity, respectively. If there is an even number of ONE
bits in the data bits, the Parity bit will be set to ONE, otherwise it
will be set to ZERO. These bits are bi-phase encoded and have a
period of 0.5𝑚𝑠 . An example of the control error packet’s Header
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is shown in Figure 3(b)1, with the messages being transmitted
using AM modulation by switching a resistive dummy load on the
power receiver side. The carrier voltage signal of AM modulation
is operated at around 125 kHz.

Among all types of Qi messages, the control error message is
the most critical for adaptively controlling power transfer. The
transmitter uses the received control error value𝐶𝑖 in the 𝑖𝑡ℎ control
error packet to adjust its primary coil’s alternating current: 𝐼 𝑖 =
𝐼 𝑖−1 · (1 +𝐶𝑖/128), where 𝐼 𝑖 is the new primary coil current, and
𝐼 𝑖−1 is the previous primary coil current constrained by both 𝐼 𝑖−2
and 𝐶𝑖−1.

2.3 Electromagnetic Induction
Based on electromagnetic induction, a wireless charging system
can be represented using Maxwell Equations (differential form):

▽ ·𝐷 = 𝜌 𝑓 , (1a) ▽ ·𝐵 = 0, (1b)

▽ ×𝐸 = − 𝜕𝐵
𝜕𝑡
, (1c) ▽ ×𝐵 = `0 𝐽 + `𝑜𝜖0

𝜕𝐸

𝜕𝑡
, (1d)

where 𝐷 is the electric displacement field, 𝐸 is the electric field
(𝐸 = 𝐷

𝜖0
), 𝐵 is the magnetic field, 𝜌 𝑓 is the electric charge density, `0

is the magnetic permeability, 𝜖0 is the electric permittivity, and 𝐽 is
the charging current density. Since Qi messages are transmitted via
AMmodulation, a change on the primary coil voltage will influence
𝜌 𝑓 and thereby further change the electric field strength. Accord-
ing to Equation 1d, a changing electric field will also generate an
induced magnetic field and further produce induced voltage on a
nearby coil. Since ZERO and ONE in Qi messages are transmitted
using differential coding (as shown in Figure 3 (b)), they would
exhibit different patterns on the induced voltage on the adversar-
ial coil. On the other side, adding an external magnetic field to
the charging system will change the strength of its magnet field
and further influence the electric field, according to Equation 1c.
The primary coil voltage of the charger would thus be affected,
thereby interfering with or even fully controlling the Qi message
transmission channel.

3 THREAT MODEL
3.1 Possible Attack Scenarios
Due to the open propagation properties of oscillating magnetic
signals, Qi wireless charging gives attackers various opportunities
to inject adversarial magnetic signals on the power transmitter
to hijack the communication channel and further alter the power
transfer. Moreover, the current design of the Qi wireless charging
does not provide any encryption or authentication mechanisms to
protect the transmitted Qi messages, which in turn can be easily
snooped by the adversary. It thus incurs potential privacy concerns
of monitoring smartphone activity while being charged. Given
these fundamental vulnerabilities, we consider the following two
attack scenarios:

(1) Hijacking Attack: In this scenario, the adversary can hijack
the Qi communication channel by injecting adversarial magnetic
signals using a disguised adversarial coil to alter the power transfer
as desired. Through modulating the alternating current flowing

1The data bits (LSB first) 0x03 indicates the packet type is control error, and the message
size can be calculated as 1 + (𝐻𝑒𝑎𝑑𝑒𝑟 − 0)/32=1 [7].

through the adversarial coil, the coil can produce well-crafted mag-
netic signals to perturb the electromagnetic field between the power
transmitter and receiver, which serves as the medium for power
transfer and the Qi message transmission. In consequence, the ad-
versary can reduce the power transfer efficiency (e.g., increasing
charging time) or directly terminate the charging process. One step
further, the adversary can even take control of the power transmis-
sion, such as intentionally manipulating the values of Qi messages,
making the transmitter transmit any amount of power they want.
This charging process may cause significant damage to the battery
(e.g., overheating, reducing battery life, or even an explosion). It’s
important to note that an adversary may be capable of directly
adding power to the receiver via coupling energy in an analog man-
ner leveraging the adversarial coil. However, the charging system
may become much more unstable in the presence of two “power
transmitters”, making the receiver reverse back to the selection
phase and end up power transfer. We leave this scenario as our
future work.

(2) Eavesdropping Attack: In this scenario, the adversary can
non-intrusively and passively derive Qi messages using a nearby
hidden adversarial coil (e.g., stuck underneath the table) and fur-
ther infer the activities of the power receiver (e.g., a smartphone)
while being charged. Due to the sudden increase in the power con-
sumption associated with phone notifications (e.g., receiving a SMS
message, or receiving an incoming phone call), the gap between the
desired and actual operating point during the power transfer (PT)
phase would have to be changed accordingly. Through capturing
the values of the control error messages, the adversary can detect
the exact time when the smartphone receives these notifications.
More importantly, different types of notifications (e.g., receiving a
SMS message, receiving an incoming phone call, and turning on the
screen by the user himself) or even the same type of notifications
from different apps would have a unique impact on the power trans-
fer control as they all rely on different set of hardware modules
(e.g., vibration motor, screen on/off, WiFi module, cellular module,
and sensor module). Therefore, when a notification is received,
different apps would show a discriminative power consumption
pattern and have distinguishable reflections on the biasing of the
operating point, further leading to different control error messages
and primary coil voltage patterns. Additionally, by deriving Qi ID &
C messages carried on the inductive coil voltage, the adversary can
obtain the basic device identifier, which can be further used to iden-
tify users. The potential security & privacy threats we discovered
are summarized in Table 1.

3.2 Assumptions & Adversary’s Capability
Given a charging pad that the victim might use in a coffee shop,
hotel, airport, library, commercial office, or home, we assume the
adversary should have the following capabilities as per each attack
scenario:

(1) HijackingAttack: In this scenario, the adversary is assumed
to be able to stealthily place an adversarial coil between the charging
pad and the charging device. For instance, the add-on adversarial
coil could be stuck on the surface of the charger and made to
resemble a lookalike sticker, such as the one shown in Figure 4(a)
which looks like an ultra-thin film (i.e., 0.7 mm thickness) and can be
attached on the charging pad’s surface without drawing suspicion.
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Table 1: Potential security and privacy threats of Qi wireless charging.

Attack Scenario Information/Action Needed Security&Privacy Threats

Hijacking attack Inject adversarial magnetic signals
Start/stop charging

Manipulate the amount of power being transferred (e.g., overcharging/undercharging)
Reduce charging efficiency, cause overheating and battery damage

Eavesdropping attack Inductive voltage on a nearby hidden coil

Recognize basic device identifier and manufacturer ID
Detect & identify the basic phone activities (e.g., Phone is unlocked and the screen is on)
Detect & identify the category of incoming notifications (e.g., phone calls or messages)
Identify the specific app triggering the notification (e.g., WhatsApp, and Messenger)

Wireless Charger

Adversarial CoilAdversarial Coil

Wireless Charger

(a) Stealthily sticking an ultra-thin ad-
versarial coil on the surface of the
charger

Smartphone & 
Wireless Charger

Adversarial Coil

(b) Hiding the adversarial coil under-
neath the surface

Figure 4: Examples of Possible attack scenarios: (a) [Hijack-
ing] sticking an ultra-thin adversarial coil to the charger’s
surface; and (b) [Eavesdropping] sticking the adversarial
coil underneath the surface on which the charging device
is placed.

In practice, the adversary can make the color of the sticker closer
to the charger’s color to make it even more unnoticeable. The
voltage of the controlled adversarial coil can be provided by a signal
generation back end, which could be concealed in an instrumented
power outlet.

(2) Eavesdropping Attack: In this scenario, as the adversary
only needs to passively receive the magnetic signals, he/she can
place the ultra-thin adversary coil farther away, such as hiding the
coil underneath the surface on which the charging pad is placed,
as shown in Figure 4 (b). The coil also requires a logging back end
to capture the inductive voltage. We used a 312 kHz sample rate
with 8-bit samples in this work, showing a reasonable throughput
of 2.5 Mbps for logging via a modern cellular network, WiFi, or a
local SD card.

For both attack scenarios, the adversary is not required to get
physical access to the charger. In other words, the adversary does
not need to disassemble the charger or modify the internal cir-
cuit board. We believe that these non-intrusive attacks are under
very practical threat models and can be surreptitiously and easily
launched in practice.

4 SNOOPING QI MESSAGE THROUGH A
NEARBY HIDDEN ADVERSARIAL COIL

In this section, we describe how an adversary can snoop Qi mes-
sages through a nearby hidden adversarial coil. Specifically, once
the adversary gets access to the inductive voltage of the adversar-
ial coil, the time-series voltage readings need to be fed into the
following components to derive Qi message data bits: Voltage De-
noising & Filtering, Packet Detection & Segmentation, and Data Bits
Demodulation.

Adversarial Coil

Charger: EVALS-TWBC-EP

41 mm

29 mm

(a) EVALSTWBC-EP charg-
ing board [31] and the ad-
versarial coil

(b) Signal denoising & filtering

Figure 5: Illustration of signal collection and filtering using
an EVALSTWBC-EP evaluation board.

4.1 Voltage Denoising & Filtering
In order to isolate Qi-message-relevant signals from the adversarial
coil voltage, we apply a moving-average filter and a low-pass filter
to smooth the signal and eliminate irrelevant frequency compo-
nents, respectively. Figure 5 shows a segment of the measured ad-
versarial coil voltage (raw signal) and the corresponding denoising
and filtering processing (filtered signal) in our eavesdropping attack
scenario. In the experiment, the wireless charger (i.e., EVALSTWBC-
EP provided by STMicroelectronics [31]) is placed on a wooden
table which has a thickness of 3.2 cm. To snoop Qi messages, a tiny
and ultra-thin adversarial coil (Figure 5(a)) is stuck underneath the
table, and the horizontal distance between the charger and the coil
is around 2 cm. A logging backend (e.g., a digital oscilloscope) is
connected to the adversarial coil for measuring inductive voltage.

To extract the modulated data bits, we first apply a moving-
average filter which only keeps the average value within a sliding
window. We set the window length as ⌈𝑓𝑠/𝑓𝑐 ⌉, where 𝑓𝑠 and 𝑓𝑐
are the sampling rate of our logging backend (i.e., 312 kHz) and
the measured carrier frequency (around 4 kHz), respectively. We
then apply a third-order low-pass Butterworth filter with a cut-off
frequency at 2 kHz (modulation frequency) to further eliminate
irrelevant frequency components, . After filtering, only the packet
segments carrying the data bits are preserved. Figure 5(b) illustrates
a fragment of the raw signal and the filtered signal in a packet
segment for visualization purposes. Qi message data can then be
detected and decoded according to the modulating frequency (i.e.,
ZERO is 1kHz, ONE is 2kHz).

4.2 Packet Detection & Segmentation
After filtering, the carrier signal can be filtered out and the signal
that does not contain Qi packets would approximately become a
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Figure 6: Filtered waveform on different tables.
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Adversarial CoilWireless Charger Wireless Charger
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(a) Experimental setup
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Adversarial Coil Adversarial Coil

Oscilloscope

Wireless Charger
Wireless Charger

Smartphone

(b) Side view

Figure 7: Experimental setup for hijacking attack: the adver-
sarial coil is stuck on the charger surface.

constant DC wave. To detect and separate each Qi packet segment,
we apply a sliding window on the filtered signal and calculate the
variance of each sliding window centered at time 𝑡 , which is rep-
resented as𝑤𝑖𝑛𝑉𝑎𝑟 (𝑡). The length of the sliding window is set to
⌈𝑓𝑠/2000⌉ to ensure the difference is sufficiently distinct. Therefore,
by setting a threshold 𝜏 , we can easily determine whether 𝑡 is in
a packet segment or not. As the duration of a single packet trans-
mission (i.e.,~30 ms) is significantly shorter than the gap between
two adjacent packets (i.e.,~150 ms), we can detect the start time 𝑡𝑠
and end time 𝑡𝑒 of each segment by solving the following objective
function:

argmax
𝑡𝑠 ,𝑡𝑒

𝑡𝑒 − 𝑡𝑠 ,

𝑠 .𝑡 .,𝑤𝑖𝑛𝑉𝑎𝑟 (𝑡𝑠 ),𝑤𝑖𝑛𝑉𝑎𝑟 (𝑡𝑒 ) > 𝜏, 𝑡𝑝 < 𝑡𝑒 − 𝑡𝑠 < 𝑡𝑔,
(2)

where 𝑡𝑝 is the minimum length of a Qi packet (i.e., 22 ms as shown
in Figure 3)2, and 𝑡𝑔 represents the maximum length of a Qi packet
which is empirically set to 70 ms to detect and segment ID & C
packets containing relatively more data bits than Control Error
packets. The argmax function is used to ensure the completeness
of a single packet segment.
4.3 Data Bits Demodulation
As illustrated in Figure 5(b), ZERO bits and ONE bits in a message
segment can be identified leveraging their different modulating
frequency. In order to derive the bi-phase encoded data bits, we
further leverage the zero-crossing points in the filtered signal to
decode the bi-phase bits. To detect these zero-crossing points, we
first calculate the mean value 𝑚 and the max value 𝑀 of all the
digital samples in the packet segment and then find out all the digital
samples that are within a distance Z = 𝑀

100 to𝑚. Given that each
bi-phase bit has a period of 0.5 ms according to the Qi standard [44],
the possible distance between two adjacent zero-crossing points
should be 0.25 ms or 0.5 ms. We thus adopt a minimum acceptable

2A packet contains at least 44 data bits, which takes 22 ms [7].
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0 01

Primary Coil Voltage

1

Normal Qi 
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End of  
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Normal Qi 
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Figure 8: Illustration of injecting a “0101" signal.

interval 𝜎 = 0.2 ms to remove the detected zero-crossing points
that are too close to each other.

After detecting all the zero-crossing points on the filtered coil
voltage signal, we can follow the bi-phase decoding mechanism
to derive the bi-phase data bits according to the distance between
two adjacent points. Specifically, as shown in Figure 5(b), two zero-
crossing points with a 0.5 ms distance (1𝑇 ) indicates a ZERO bit,
while three zero-crossing points with a 0.25 ms distance (0.5𝑇 )
between each adjacent pair represents a ONE bit. Following this
rule, the data bits sequence could be obtained. In the practical
implementation, we increase the distance threshold to 1.5𝑇 and
0.75𝑇 respectively, in case of the inevitable biases and time delay
caused by the manufacturing imperfection.

We further conduct the same type of experiment on two other
tables with different materials & thickness to demonstrate the gen-
eralizability of the attack. The results are shown in Figure 6. We can
observe similar patterns from an oak table which has a thickness
of 2.4 cm and a glass table which has a thickness of 0.4 cm. This
demonstrated that our attack can be extended to various surfaces
with different materials & thickness.

5 VALIDATION OF ADVERSARY’S
CAPABILITIES

5.1 Hijacking via Adversarial Message
Injection

To verify whether the adversary is capable of injecting manipu-
lated Qi messages by using an adversarial coil and further hijack
the charging process, we conduct an experiment where the ad-
versarial coil is stuck on the surface of the wireless charger (i.e.,
EVALSTWBC-EP board [31]) while a smartphone (i.e., LG G7) is
being charged, as shown in Figure 7. We use a Keysight 33522B
waveform generator to produce the well-crafted alternating signal
on the adversarial coil while the oscilloscope is used to monitor the
charging process.

In order to communicate with the wireless charger, Qi requires
the perceived AM modulated signal to change significantly in the
primary coil voltage (i.e., > 200 mV) of the charger [44]. To verify
the adversary’s capability, we add a 80 kHz sinusoidal wave with a
20 V peak-to-peak voltage on the adversarial coil, and we observe
that the primary coil voltage is increased up to 3 V, which is much
greater than 200 mV. By switching off the signal, the primary coil
voltage returns to its original level. Thus, to inject manipulated Qi
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Figure 9: Experimental setup for eavesdropping attack: the
adversarial coil is stuck underneath the table.

messages, the adversary can follow the bi-phase encoding mecha-
nism to regulate the voltage of the adversarial coil (i.e., switching
between LOW and HIGH states): When the signal is added on the
adversarial coil, it’s a LOW to HIGH switch, while it’s a HIGH to
LOW switch when it’s removed from the adversarial coil. Figure 8
shows the primary coil voltage and rectified voltage when we inject
“0101" signals in intervals into the normal Qimessages. Note that the
rectified voltage is measured using the test point provided by the
wireless charger board, which can better visualize pre-demodulated
Qi messages to verify whether the signal is successfully injected.
We can observe the bi-phase encoded “0101" signal (the following
High voltage represents the end of the injected bit sequence that
was intentionally added by us) from the rectified coil voltage clearly,
which confirms our hypothesis that the adversary can inject any
malicious communication packets to control the charging process
by just using a tiny adversarial coil.

5.2 Eavesdropping via Inductive Voltage
Our attack is built on the hypothesis that the inductive voltage of
a nearby hidden adversarial coil and its derived Qi Control Error
messages carry rich information of the phone activities while being
charged. This is because when an activity is triggered while charg-
ing, the battery will charge at a slower rate than inactive to allow
enough power for the ongoing usage [38]. As a consequence, the
charging device will adjust its desired operating point and further
transmit corresponding Control Error messages to the charger to ad-
just the transmit power density. Different activities usually rely on
different sets of hardware modules, thus they have different initial
power consumptions while being triggered. This would cause the
charging device to skew from the operating point at different scales,
leading to an identifiable pattern on the control error sequences
as well as the inductive voltage. We experimentally validate our
hypothesis by addressing the following questions: (1) Does the oc-
currence of an activity have an impact on the control error sequence
& the nearby hidden coil’s inductive voltage? (2) Do different kinds
of activities (i.e., receiving a phone call, a notification message, and
manually turning on the screen by the user) generate unique pat-
terns on the control error values and the inductive voltage? (3) For
the same kind of activity, do different apps (e.g., receiving a SMS
message or a WeChat message) still have distinguishable patterns?

The experimental setup is shown in Figure 9. Specifically, we use
the EVALSTWBC-EP board [31] (Figure 5(a)) and a smartphone (i.e.,
LG G7) as the wireless charger and charging device, respectively.
The adversarial coil is hidden underneath the surface on which the

Control Error
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Control Error
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Starts Activity Ends

Activity Starts Activity Ends

(a) Receiving a SMS msg.

Control Error

Moving Variance

Control Error

Moving Variance

Activity 
Starts Activity Ends

Activity Starts Activity Ends

(b) Receiving a Wechat msg.

Figure 10: Examples of the control error sequences with dif-
ferent activities.
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Cellular Phone Call
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Figure 11: Normalized moving abs-mean voltage of the cap-
tured adversarial coil among different activities & apps.

charger is placed. The coil is connected to the probe of a Tektronix
TBS2102 digital oscilloscope, which serves as the data logging back-
end. The surface is a wooden table which has a thickness of 3.2
cm. Figure 10 shows the extracted control error sequences and its
moving variance when the smartphone receives a SMS message
and a WeChat message respectively, while being charged. As these
activities trigger various actions on the smartphone (e.g., turning
on the screen, popping up a notification, and running necessary
background services), we observe that the values of the control
error messages, which are for power density adjustment, change
greatly while themoving variance is approximately zero when there
is no activity. In addition, we find that the received control error
sequence exhibits different patterns of these two activities, which
confirms that control error messages carry information that can be
used to distinguish different phone activities. To further verify the
distinguishability of the inductive voltage on the adversarial coil
during phone activities, we measure the inductive voltage while the
smartphone receives a cellular phone call, a WhatsApp phone call,
and is unlocked manually (twice for each activity) as shown in Fig-
ure 11. To better visualize the voltage pattern, we perform Z-score
normalization [22] on the measured voltage. We can see the voltage
curves of the same activity have a very similar pattern, while the
curves of different activities exhibit distinguishable patterns.

To further confirm our hypothesis, we collect the inductive volt-
age on the adversarial coil and the decoded control error sequences
when the smartphone (i.e., LG G7) is triggered by (1) three types
of activities: receiving a cellular phone call, a SMS message, and
manually turning on the screen (50 times for each activity); and
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Figure 12: Illustration of the extracted features of inductive
coil voltage and control error sequence to distinguish differ-
ent activities.

(2) three apps of the same activity (i.e., receiving phone calls): cellu-
lar phone call, WeChat phone call, and WhatsApp phone call (50
times for each activity). We then extract 14 time-domain features
(i.e., length, minium, maximum, median, variance, std, abs-mean,
cv, skewness, kurtosis, first quartiles, second quartiles, third quar-
tiles, inter quartile-range) from both the voltage signal and the
decoded control error sequence on each activity segment (using
the segmentation method introduced in Section 7.1). We also calcu-
late the FFT of the voltage signal for each segment and divide the
frequency range into 100 equal-size frequency bins. The average
amplitude in each bin is used, resulting in a total of 100 frequency-
domain features. We apply linear discriminant analysis (LDA) [12]
for dimensionality reduction and plot the extracted features in a
2-dimensional domain as shown in Figure 12.We observe that differ-
ent activities and apps can be easily distinguished and the collected
samples of each activity are densely clustered. These findings have
addressed the three questions we raised and validate the hypothesis
of our proposed attacks.
6 ATTACK DESIGN AND EVALUATION:

HIJACKING VIA ADVERSARIAL MESSAGE
INJECTION

6.1 Malicious Qi Packet Generation
As described in Section 5.1, through the stealthy placement of an
adversarial coil, the adversary is capable of injecting manipulated
Qi messages. To achieve this, we generate the following two types
of Qi messages: (1) End Power Transfer (EPT) Packet: After the EPT
packet has been received, the charger will terminate the power
transfer immediately. To be specific, the EPT packet has a header
value of 2, and the data in the message byte indicates the reason
for the power transfer end (e.g., overheating, logic error, battery
failure). (2) Control Error Packet: The control error packet carries the
information about the difference between the charging device’s de-
sired transmit power density and the actual density. This is used by
the charger to adaptively control its power transfer. The adversary
thus can manipulate the values of control error messages to control
the power transfer. A positive control error value indicates that
an increase in transmit power density will be triggered and vice
versa. By controlling the power transfer, the adversary can cause
overcharging or undercharging, leading to a reduction in charging

Injected End Power Packet Injected End Power Packet

Charging 
Terminated

Charging 
Terminated

Inductive Voltage

Inductive Voltage

Figure 13: Terminate charging process via injecting end
power transfer packets.
efficiency and significant damage to the battery (e.g., overheating,
reducing battery life, or even an explosion).

6.2 Experimental Methodology
The experimental setup is similar to the setup shown in Figure 7. An
ultra thin adversarial coil (i.e., 0.7 mm) [10] is placed between the
charger and the charging device (i.e., a smartphone), with the alter-
nating signal being generated by a wave generator. We validate our
attack under three scenarios in order to terminate the charging pro-
cess, reduce charging efficiency and transfer excess power (causing
overheating, battery life reduction, or even an explosion). The ex-
periments are conducted using 5 different commodity smartphones
(i.e., Samsung Galaxy Note 5, Samsung Galaxy S7, LG G7, Google
Pixel 3, and iPhone 8) and two chargers (i.e., an EVALSTWBC-EP
board [31] and a commercial Yootech charger [2], which has more
than 106,034 customer ratings on Amazon byMay, 2021). Our attack
has been successful on attacking all these devices. To illustrate the
attack’s success, we use the experiment with an EVALSTWBC-EP
charger [31] due to its convenience for monitoring the charging
process and a Samsung Galaxy Note 5 as an example in the rest of
this section.

6.3 Attack Effectiveness
Charging Process Termination. In order to terminate the charg-
ing process, the adversary can modulate an EPT packet in the
communication channel with an arbitrary value in the message
byte. In our experiment, we set the value to 3, which indicates
the charging device is overheating (but actually not). As shown
in Figure 13, as soon as the malicious EPT packet is injected, the
charging process is terminated instantly (i.e., in 0.05 seconds). If
an end power event occurs, both the power transmitter and the
receiver will move back to the selection phase, trying to restart
the power transfer again. Therefore, in order to stop the charging
process permanently, the adversary has to continuously (repeat-
edly) inject EPT packets, in turn generating an inductive voltage
on the primary coil, as shown in Figure 13, and disturbing the ACK
signal sent to the power receiver to make the charging process
unable to restart. Our experiment validates the effectiveness of this
type of attack, which can make wireless chargers stop working and
cause great inconvenience to their users. Additionally, although
we show the feasibility of such denial-of-service (DOS) attack in
Qi wireless charging, we believe this threat could be extended to
other wireless-charging-enabled devices as well, making the device
incapable of operating, such as an EV failing to start, or cause a
wireless cardiac pacemaker to stop working.

ChargingEfficiencyReduction.To reduce charging efficiency,
the adversary can flood a bunch of manipulated control error packets
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Figure 14: Injecting malicious Qi control error messages to
take control of the wireless charging.

with a negative value in the communication channel. Since these
fake packets will cause an unexpected primary coil voltage, the
receiver will try to make the voltage back to normal via sending
legitimate control error messages. To prevent the charging sys-
tem from completing self-calibration and to take full control of the
charging process, we inject the malicious Qi messages at a nearly
maximum frequency (i.e., approximately 40 packets per second, as
each packet lasts for around 25 ms), which is much higher than
legitimate Qi communication (i.e., 6-7 messages per second). This
ensures each legitimate Qi packet may have an overlap with our
injected packets, which can break the integrity of the legitimate Qi
packets so as to make them lose effectiveness.

Figure 14(a) shows the experimental result of injecting a set of
control error packets with a value of -10 in the communication
channel. We can clearly observe that, during the normal power
transfer phase (before injecting malicious Qi packets), the primary
coil voltage is maintained at a very stable stage with all the control
errors equal to 0. However, after we start injecting malicious pack-
ets, the demodulated control errors become −10 and the primary
coil voltage starts to linearly decrease and is reduced to only half of
its original amplitude within 2 seconds. Some of the peaks during
the decrease are caused by the alternating signal of the adversarial
coil, as the signal itself also has an impact on the amplitude, but
it won’t influence the overall trend. This example validates the
effectiveness of the injected malicious Qi messages, significantly
reducing the charging efficiency. In other words, the adversary can
control the charger and transmit any amount of power they want,
such as transmitting a very low amount of power per cycle. Outside
of increasing the amount of time it takes to charge a device, existing
studies [15, 17] demonstrate that undercharging can damage the
chemical properties of the battery and shorten the life of battery
cells.

Excess Power Transfer. To transfer excess power, we periodi-
cally inject malicious control error packets with a positive value in
the communication channel. Similarly, we inject these malicious
packets at a high frequency (i.e., approximately 40 packets per
second). For safety concerns, we set the value of the control error
messages to a relatively small number (i.e., 6). With a larger value of
the control error messages, the transmit power density will increase
more quickly. As shown in Figure 14(b), after the malicious control
errors 6 starts being injected, the primary coil begins increasing and
can nearly reach twice its original peak-to-peak voltage within 2
seconds with all of the demodulated control errors from the charger
are equal to 6. In the normal operation of Qi wireless charging, the

charging device will send an EPT packet to the charger to request
“stop charging” if it is overheating, however such a packet will be
dropped under this attack due to the collision with the continuously
injected malicious control error packets. During the experiment, we
could obviously feel the excessive heat of the smartphone and even
heard an electric hum when the primary voltage was increased
to 25 V. Due to safety concerns, each round of experiments was
only performed for a short time, yet we successfully demonstrated
the attack’s potential to make the charger transfer excess power
through the manipulated Control Error packets. Existing studies
have empirically demonstrated the serious consequences in more
safety-controlled lab environments when the battery undergoes
overcharging. For instance, when a lithium-ion battery keeps being
overcharged, thermal runaway would ensue, inducing the battery
to vent with smoke, fire, or an explosion [8, 11, 13, 20]. All these
results show that this type of attack poses a very serious threat
to public safety, and we believe that the potential threat may be
more serious in other wireless charging systems, such as medical
implants, electrical vehicles, etc.

7 ATTACK DESIGN AND EVALUATION:
EAVESDROPPING VIA INDUCTIVE COIL
VOLTAGE

7.1 Activity Detection & Segmentation
As mentioned in Section 5.2, when an activity is triggered on the
phone, the values of the transmitted control error messages will be
changed accordingly. To detect and segment the initialized control
error pattern associated with each activity, we first apply a sliding
window on the control error sequence and calculate the variance
of each window. The window length is set to 5 as the receiving rate
of Qi messages is approximately 6-7 packets per second. Similar to
Equation 2, we detect the start time and end time of each segment
using two pre-defined thresholds (i.e., minimum and maximum
segment lengths). We empirically set these two thresholds to 1
second and 4 seconds, which can filter out most of the unexpected
instantaneous fluctuations on the control error when there is no
activity occurred. Moreover, after a period of inactivity, the screen
of the smartphone will automatically turn off, which also leads to
some fluctuations on the control error. However, compared with
the segment when an activity is triggered, the sum of control error
values is always a negative value, while we find that the segment as-
sociated with the screen turned off is a positive value. We therefore
restrict that the sum of all the control error values in an activity
segment has to be a negative value.

7.2 Activity Classification
Time-frequency Feature Extraction. Once we have obtained
each activity segment, we need to extract its representative feature
set. To be specific, we use time-frequency domain features con-
sisting of 14 statistical time-domain features (i.e., length, minium,
maximum, median, variance, std, abs-mean, cv, skewness, kurtosis,
first quartiles, second quartiles, third quartiles, inter quartile-range)
extracted from both the control error sequence and the adversar-
ial coil voltage. Frequency domain features are calculated using
the Fast Fourier Transform (FFT) on the adversarial coil voltage of
each segment. We divide the frequency range into 100 equal-size
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frequency bins and use the average amplitudes in each bin as fre-
quency domain features. Therefore, we can obtain a total of 128
time-frequency features for each activity segment.

Feature Selection & Classification. To identify each activity,
we apply a hierarchical classification scheme. Specifically, we first
perform activity category classification to identify the type of the
activity (i.e., calling, messaging, or the screen turned on by the
user manually). Then we conduct app classification to identify the
specific involved app if it’s a calling or messaging activity. To mini-
mize the adversary’s attacking efforts and make our work devel-
opable/exploitable in the real world, we use a standard classifier
to differentiate these activities. We have tried Linear Discriminant
Analysis (LDA), Random Forest, Support Vector Machine (SVM),
and a 2-dense-layer Deep Neural Network (DNN) with 50 neurons
in each layer. We find that Random Forest outperforms other classi-
fiers. Additionally, we observe that not all of the 128 time-frequency
features are unique enough to make different activities distinguish-
able from each other. To further improve the performance, we first
train the random forest classifier on the complete dataset with 128
features, and calculate the overall contribution of each feature to
the decision made by the classifier. The prediction function of a
forest is the average of the prediction of its child trees, which can
be decomposed into a sum of each feature [21]:

𝐹 (𝑥) = 1
𝐽

𝐽∑
𝑗=1

𝑐 𝑗𝑓 𝑢𝑙𝑙 +
𝐾∑
𝑘=1

( 1
𝐽

𝐽∑
𝑗=1

𝑐𝑜𝑛𝑡𝑟𝑖𝑏 (𝑥, 𝑘)), (3)

where 𝐹 (𝑥) is the predict outcome for the instance 𝑥 of the random
forest classifier and 𝐽 is the number of decision trees. 𝑐 𝑗𝑓 𝑢𝑙𝑙 is the
value at the root of the node for the 𝑗th decision tree, which is
determined during the training phase. 𝐾 is the number of features
and 𝑐𝑜𝑛𝑡𝑟𝑖𝑏 (𝑥, 𝑘) is the contribution of the feature 𝑘 in the instance
𝑥 . We only preserve a subset of features that have relatively larger
contributions than the average of all the features. By applying this
feature selection method, the number of features being used is
reduced to around 30-40. These selected features through training
are used in the following test phase.

7.3 Experimental Methodology
Experimental Setup. The experimental setup is similar to the
setup shown in Figure 9. A smartphone is placed on the charger
(i.e., an EVALSTWBC-EP board [31]), and the adversarial coil is
stuck underneath the table and connected to a Tektronix TBS2102
digital oscilloscope. The table has a thickness of 3.2 cm, and the
horizontal distance between the charger and the adversarial coil
is around 2 cm. In the experiment, we use 3 different commodity
smartphones including a SamsungGalaxyNote 5, a SamsungGalaxy
S7, and a LG G7.

Data Collection. While the smartphone is being charged, we
manually send messages to it from 10 commonly used social apps
(i.e., SMS, WhatsApp, Viber, WeChat, QQ, Skype, Tumblr, Twitter,
Instagram, and Messenger). 50 messages are send to each app on
each phone. We also deliver phone calls to each smartphone using 4
common calling apps (i.e., cellular phone call, WhatsApp, Skype and
WeChat), and 50 phone calls are made to each app on each phone.
Additionally, we manually turn on the screen of each smartphone
50 times by pressing the power button, which indicates the user
manually operates the phone. In total, we collect 2250 activities

Table 2: Activity classification performance among 3 types
of activities.

10-fold cross-validation Train & Test (2 : 1)
Accuracy Precision Recall Accuracy Precision Recall

Note 5 95.00% 95.85% 95.83% 95.00% 92.59% 95.23%
S7 98.00% 97.33% 97.33% 98.00% 98.33% 97.78%
G7 95.33% 96.67% 96.67% 96.00% 96.29% 96.49%

Table 3: Phone call classification performance of 4 com-
monly used calling apps.

10-fold cross-validation Train & Test (2 : 1)
Accuracy Precision Recall Accuracy Precision Recall

Note 5 90.00 % 89.38% 89.37 % 96.22% 96.77% 95.56%
S7 98.00% 97.65% 97.99% 98.78% 98.81% 98.53%
G7 95.20% 93.95% 94.00% 95.18% 95.65% 95.65%

from these phones and the whole experiment is conducted over a
two-month time period. During the experiment, the battery levels
of these phones were between 5% to 100% without manual controls.

Evaluation Method & Metrics. We use both 10-fold cross-
validation and training & testing for classification. Specifically,
10-fold cross-validation divides the whole dataset randomly into
10 disjoint subsets, using 9 subsets for training and the retaining
1 subset for testing. For training & testing, we divide the whole
dataset into a training set and a testing set, with a size ratio of 2:1.
In addition, we use Accuracy, Precision and Recall to evaluate our
attack. Specifically, the accuracy is defined as the percentage of
the correctly identified activities among all the triggered activities.
The precision of identifying the class 𝑘 is defined as 𝑃𝑘 =

𝑇𝑃𝑘
𝑇𝑃𝑘+𝐹𝑃𝑘 ,

where 𝑇𝑃𝑘 and 𝐹𝑃𝑘 are the true positive rate and the false positive
rate for the class 𝑘 , respectively. The recall of identifying the class
𝑘 is defined as 𝑅𝑘 =

𝑇𝑃𝑘
𝑇𝑃𝑘+𝐹𝑁𝑘

, where 𝐹𝑁𝑘 is the false negative rate
for the class 𝑘 .
7.4 Attack Performance
Activity Category Classification. As shown in Table 2, we ob-
serve that our attack is able to distinguish different types of activ-
ities with a substantial degree of accuracy. For the 10-fold cross-
validation setup, the accuracy for all smartphones reach at least
95%, in which the S7 achieves the best accuracy of 97.33% preci-
sion/recall. Although there is no app being triggered for the class
“screen turned on manually by user”, our attack can still distinguish
this activity. As a baseline, a random guess attack could only achieve
33.3% which is significantly worse than our attack.

Calling App Classification. As shown in Table 3, the reported
classification accuracy, precision, and recall for all three phone
models achieve more than 89% in both the 10-fold cross-validation
and train & test models. The attack on the Samsung Galaxy S7
phone achieves the best accuracy with over 98.00% and 98.78% for
the 10-fold cross-validation and train & test models, respectively.
These results are much higher than a random guess attack (25% in
distinguishing 4 calling apps), leading to the conclusion that the pri-
vacy threat of our attack is indeed serious. The results demonstrate
the adversary’s ability to detect and identify these calling activities
by merely relying on the inductive adversarial coil voltage.

Messaging App Classification. As shown in Table 4, even if
these types of activities are the same, we still achieve a very high
performance for the Samsung S7 and LG G7 phones with the ac-
curacy over 84% and 89%, and precision/recall over 86% and 90%,
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Table 4:Message classification performance of 10 commonly
used messaging apps.

10-fold cross-validation Train & Test (2 : 1)
Accuracy Precision Recall Accuracy Precision Recall

Note 5 82.50% 82.17% 81.94% 80.67% 84.05% 83.63%
S7 86.81% 86.27% 83.35% 84.57% 86.34% 86.34%
G7 90.48% 90.83% 90.83% 89.80% 90.06% 90.06%

respectively, in both 10-fold cross-validation and train & test mod-
els. For the Note 5, we also have a relatively good result of over 80%
accuracy, which is still much higher than a random guess (i.e., 10%
in distinguishing 10 messaging apps). These experimental results
showed that all these activities triggered by different apps exhibit
unique and distinguishable patterns in the adversarial coil voltage
and its derived Qi control error sequence, which can put people’s
privacy at risk while recharging their smartphones wirelessly.

8 DEFENSE STRATEGIES
Defense Against Hijacking Attack. When there is an alternat-
ing current flowing in the adversarial coil, the primary coil volt-
age will exhibit a different pattern due to the generated inductive
power. Therefore, it’s feasible to defend against the hijacking attack
through detecting this external energy and swiftly terminate the
charging process or reject the incoming messages once it’s detected.
Figure 15 (a) and 15 (b) show the power spectrogram of the pri-
mary coil voltage with and without malicious message injection,
respectively. We can observe from Figure 15(a) that only the fre-
quency response of the primary coil voltage is displayed, while
the frequency response of the 80kHz sine wave, which serves as
the carrier wave of the injected Qi messages in our implementa-
tion, is revealed on Figure 15(b). We thus propose the following
sliding-window based automatic anomaly detection mechanism:
the transmitter shall calculate the FFT of the primary coil voltage in
each sliding window and use a peak detection algorithm to detect
the number of peaks in the FFT spectrum. If there’s an extra peak
detected in addition to the operating frequency, it’s highly likely
there’s an ongoing hijacking attack. To prove the feasibility of such
a defense mechanism, we use the peak detection algorithm pro-
vided by the Scipy toolkit [45] and collect the primary coil voltage
traces under two different scenarios: the first is where the smart-
phone is charging at a normal state while the other is under an
overcharging attack, with the frequency of the adversarial signal
set as 80kHz. Although we choose 80kHz as the carrier frequency
in our implementation, there would always be an extra peak on
the FFT spectrum even if the adversary uses other frequencies. We
set the sliding window size as 20ms, with each scenario having a
total of 32 seconds trace with 1600 samples. The anomaly-detection
algorithm reaches a 100% true positive rate and a 0% false positive
rate. This promising result demonstrate the effectiveness of the pro-
posed mechanism, which can be used as a reference in the future
design of Qi standard.

If the adversary sets the frequency exactly the same as the oper-
ating frequency of the primary coil, a legitimate charging profile
containing a FFT spectrum collected from normal charging pro-
cesses, would be created. The spectrum with message injection
can thus be detected using outlier detection algorithms, such as
1-class SVM [40], isolation forest [26], and local outlier factor [36].
Defense Against Eavesdropping Attack. For the eavesdropping

Injected Adversarial Signal

Injected Qi Message

Primary Coil Voltage Primary Coil Voltage

Add color bar.
(a) Normal charging state

Injected Adversarial Signal

Injected Qi Message

Primary Coil Voltage Primary Coil Voltage

Add color bar.
(b) Under hijacking attack

Figure 15: Spectrogramof the primary coil voltage at normal
charging state and under hijacking attack.
attack, adding noises to the primary coil voltage would directly
introduce additional distortion on the inductive voltage of a nearby
adversarial coil, making its correlation between the smartphone
activities tampered, further downgrade the classification accuracy.
To validate our thoughts, we collect 500 traces of the primary coil
voltage while the smartphone (i.e., Note 5) is triggered by 10 mes-
sage apps (50 times each) in our eavesdropping attack setting. We
further perform the same classification methods as aforementioned
and achieve a 10-fold cross-validation accuracy of 91.98% serving
as the baseline accuracy. We then add random noises to parts of the
collected primary coil voltage traces where there are no modulated
communication packets. Specifically, for each gap between two
adjacent packets, we add a Gaussian white noise with a random
mean and standard deviation. This approach cause the 10-fold cross-
validation accuracy to drop from 91.98% to 44.37%, indicating that
adding random noises can indeed thwart eavesdropping attack.

In our current approach, we add noises to the collected voltage
traces from the software side. We would also like to try some ex-
isting hardware based approaches, such as masking the voltage
signal via a randomizer [3] and the DES encryption algorithm [39].
Dynamically switching the frequency and amplitude of the coil
voltage [52] and duplication methods [14] may also be helpful on
perturbing the integrity of the collected voltage traces. This would
be considered for our future work.
Other Potential Approaches. In addition to the anomaly detec-
tion algorithm, another possible approach to defend against the
hijacking attack is to detect the in-correlation between the con-
trol error message and the sudden rise of primary coil voltage.
The adversarial alternating current will cause a sudden rise on
the amplitude of the primary coil voltage, however, the transmit-
ter will not receive a corresponding control error message at that
moment. Thus, this conflict could be used for anomaly detection.
Moreover, due to the self-calibration characteristic of Qi standard,
the adversary has to inject malicious messages continuously at a
very high frequency to ensure the attack is effective. The trans-
mitter can thus monitor the message receiving rate and terminate
the charging process once a sudden increase is detected. Wire-
less charger identification\authentication could be also possible
to defend against hijacking attacks, though additional efforts are
required in detecting the successfully injected Qi messages on the
charger’s primary coil. A recent study [53] showed that it could
identify wireless chargers via fingerprinting based on the intrinsic
nonlinear distortion effects of the underlying charging circuit. We
will also follow this to explore if we could use these fingerprints at
the circuit level to design a more resilient charging system.
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For the eavesdropping attack, besides adding irregular noises
on the primary coil voltage, another possible procedure is to add
light-weight encryption mechanisms (e.g., lightweight block ci-
phers, hash functions [41], and AES [16]) to the Qi communication
channel, which helps avert Qi messages from being eavesdropped.
Some other existing studies [1, 18, 19, 54, 55] proposed to chaoti-
cally regulate the frequency of the power source to encrypt the
energy, so that only legitimate power receivers can acquire the
energy. As Qi uses AM modulation to modulate data bits on its
carrier signal, we can possibly leverage this chaotic frequency reg-
ulation technique in a reverse way to protect the Qi messages (kind
of energy) sent from the charging device to the charger. We leave
these potential approaches as our future work.

9 DISCLOSURE
We are working with the industry to resolve the identified threats.
We have already informed theWireless Power Consortium (WPC) [47]
of the potential security and privacy threats of Qi wireless charging.
The fix of the identified threats is ongoing.

10 RELATEDWORK
Security and Privacy Threats on Wired Charging. Due to the
limited lifespan of smartphone batteries, a number of USB charging
stations have been set up in public areas, such as airports, hotels,
and hospitals, etc. Although these charging stations provide a great
convenience, existing studies [23, 24, 42, 50, 51] have shown that the
charging stations also expose users to serious privacy threats. For
instance, Mactans [24] showed the success of deploying malware
on iOS devices within one minute of being plugged into a malicious
USB wall charger. Tian et al. [43] demonstrated AT commands
issued through USB charging interfaces can launch various types of
attacks onAndroid devices (e.g., unlock screens, inject touch events).
KeySweeper [23] uses a malicious USB wall charger to passively
sniff, decrypt, and log all keystrokes from wireless keyboards in the
vicinity. Moreover, Yang et al. [51] showed that webpage browsing
activity (i.e., which webpages are loaded) on smartphones while the
phone is being charged can be collected via power trace analysis.
Relying on the power consumption information, Yang et al. [50]
also proposed a new attack on Tor to identify which website is being
visited. Spolaor et al. [42] demonstrated the potential of using a
(power-only) USB charging cable to exfiltrate data (e.g., IMEI, and
contacts’ phone number) from a smartphone through installing a
malicious app on the device. Additionally, Meng et al. proposed a
set of juice filming attacks which can automatically monitor and
record the phone screen during the charging process [28–30].

Security and Privacy Threats on Wireless Charging. Com-
pared with the security research on wired charging, the research
efforts in exploring the vulnerabilities of wireless charging are still
in the early stage. Several studies explored the security and safety
issues of wireless powered communication networks. For instance,
Dai et al. [9] proposed an algorithm that maximize the charging
utility of far-field, radio frequency-based wireless rechargeable
sensor networks (WRSNs), while assuring human safety under
the electromagnetic radiation (EMR) exposure. Lin et al. [25] pro-
posed a denial-of-charging attack on WRSNs for wireless charging
vehicles. Through generating fake charging requests, the attack
can make the rechargeable sensor nodes in the network exhaust

faster than usual. Moreover, Niyato et al. [32, 33] formulated the-
oretical models (e.g., game theoretic models) in wireless powered
communication networks to analyze the energy request and data
transmission policy under jamming attacks. Additionally, given the
security requirements in many applications, such as preventing
unauthorized electric vehicles (EVs) from obtaining the energy, sev-
eral studies [18, 19, 54, 55] proposed energy encryptionmechanisms
to ensure the power is only transmitted to an authorized receiver.
There has been limited discussion on security and privacy threats
of these wireless charging systems. Regarding wireless charging for
mobile devices, few studies have investigated its underlying vulner-
abilities. A survey paper [27] only briefly mentioned the possibility
of launching eavesdropping and man-in-the-middle attacks against
Qi. Neither technical details nor proof-of-concept experiments were
provided. The discussion on eavesdropping attack was only limited
to identity leakage (i.e., the manufacture of the smartphone), while
the possibility of hijacking attacks and revealing more sensitive
private information such as smartphone’s activities have not been
discussed. Roychowdhury [37] proposed an encryption method
to protect the transmitted communication packets (i.e., ID & C
packets) via simulation, while Yang et al. [49] proposed QID, a sys-
tem which could identify different charging devices leveraging the
unique features extracted from coil activities. Similar to the survey
paper [27], only identity leakage had been taken into consideration
in these papers. In general, the underlying threats of Qi wireless
charging deserve to have greater attention.

Different from existing studies, we want to bring to public atten-
tion the potential vulnerabilities of wireless charging, particularly
Qi wireless charging for mobile devices, to prioritize its mitigations
under attacks. We analyze Qi standard from both security and pri-
vacy perspectives and demonstrate the capability of an adversary
to take over the entire charging process and infer various phone
activities while it is being charged.

11 CONCLUSION
In this paper, we conducted the first thorough study to explore
the potential security and privacy vulnerabilities of Qi wireless
charging. We demonstrated that due to the open propagation char-
acteristic of electromagnetic signals, the Qi communication channel
can be easily hijacked by injecting malicious Qi messages through
stealthy placement of an adversarial coil on the charger. Addition-
ally, an adversary is capable of snooping Qi messages transmitted
between the wireless charger and the charging device to further
detect and identify the device’s activities (e.g., incoming phone
calls and messages from different apps) while being charged. We
validated that the adversary can reduce charging efficiency, stop
power transfer, cause overcharging, which may lead to significant
damage to the battery by injecting malicious Qi messages. More-
over, extensive experiments using multiple different commodity
smartphones and 14 commonly used social apps demonstrated the
effectiveness of the proposed eavesdropping attack.
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