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BIOFACE-3D: 
3D Facial Tracking and Animation 
via Single-ear Wearable Biosensors

[HIGHLIGHTS]

Over the last decade, facial landmark tracking and 3D recon- 
struction have gained considerable attention due to their 
numerous applications, such as human-computer interactions, 
facial expression analysis, emotion recognition, etc. However, 

existing camera-based solutions require users to be confined to a particular 
location and face a camera at all times without occlusions, which largely 
limits their usage in practice. To overcome these limitations, we propose 
the first single-earpiece lightweight biosensing system, Bioface-3D, that can 
unobtrusively, continuously, and reliably sense the entire facial movements, 
track 2D facial landmarks, and further render 3D facial animations. 
Without requiring a camera positioned in front of the user, this paradigm 
shift from visual sensing to biosensing would introduce new opportunities 
in many emerging mobile and IoT applications. 

Excerpted from “BioFace-3D: continuous 3d facial reconstruction through lightweight single-ear biosensors” from MobiCom ’21: Proceedings of the  
27th Annual International Conference on Mobile Computing and Networking with permission. https://dl.acm.org/doi/10.1145/3447993.3483252 ©ACM 2021 
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Facial landmark tracking and 3D reconstruc-
tion are becoming fundamental in various 
emerging applications that require facial anal-
ysis. For instance, facial landmark tracking 
can be used for driver attentiveness monitor-
ing to detect drowsiness and abnormal behav-
iors [1]. Continuous 3D facial reconstruction 
can enable a fully immersive user experience 
by increasing the awareness of the user’s 
real-time facial expressions and emotional 
states in virtual reality (VR) scenarios [2]. 
Moreover, recognizing facial movements can 
enable silent-speech interfaces for convenient 
human-computer interactions [3]. 

However, traditional camera-based 
solutions [4] require users to face a camera 
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biosignal network can work independently to 
perform continuous 3D facial reconstruction 
without any visual input. Specifically, during 
training, we collected visual and biosignal 
streams using an off-the-shelf camera (e.g., 
a laptop’s built-in camera) and our designed 
BioFace-3D wearable device, respectively. 
We then perform signal synchronization to 
ensure the synchronization between the 
streamed biosignal and the video frames. 
After that, the visual and biosignal streams 
are processed separately as follows:

Visual Stream in Training. We first conduct 
video resampling to make the recorded 
videos from different camera types to be 
resampled in a uniform frame rate, which 
allows the vision network to take any visual 
input regardless of its actual frame rate in 
recording. Next, we perform face detection 
for each video frame, and crop the frame to 
only preserve the detected face. The cropped 
image frames are then fed into the pre-trained 
vision-based high-resolution network for 2D 
facial landmarks detection. Furthermore, 
we employ landmark alignment to eliminate 
the effect caused by head poses (i.e., scale, 
rotation, and translation). The detected 
2D facial landmarks are then warped and 
transformed to a uniform aligned coordinate 
space, which will serve as the groundtruth to 
guide the training of the biosignal network.

at all times without occlusions and under 
good lighting conditions, which largely 
restricts their application scenarios. 

Alternatively, there exist several audio-
driven approaches that rely on speech to 
reconstruct speaking-associated facial 
movements [5]. However, they neither 
distinguish between expressions while 
talking (e.g., talking in an enthusiastic or 
sad manner) nor can they be applied to 
the scenarios that do not involve human 
speaking (e.g., silent-speech gestures). 
Additionally, a lot of wearable sensor–based 
methods have been proposed to recognize 
a user's facial gestures [6, 7]. However, all 
these studies can only distinguish a small 
set of pre-defined facial gestures. 

To circumvent all the limitations of 
existing approaches, we provide a wearable 
biosensing system that can unobtrusively, 
continuously, and reliably sense entire facial 
movements, track 2D facial landmarks, and 
further render 3D facial animations by fitting 
a 3D head model to the 2D facial landmarks. 
We explore a novel point in the design space 
and propose a single-earpiece biosensing 
system, BioFace-3D, as illustrated in Figure 1.  
Specifically, BioFace-3D uses two-channel 
biosensors with surface electrodes attached 
to a very small area around one side of the 
user's ear to capture both EMG and EOG 
bioelectrical signals. These sensor positions 
ensure the sensing capability of BioFace-3D in 
providing sufficient information for the entire 
facial reconstruction, while still remaining 
at a minimized obtrusiveness level to the 
wearer. To enable 3D facial reconstruction 
beyond the confines of cameras, we build a 
cross-modal transfer learning model that can 
learn vision-biosignal correspondences in a 
supervised manner, which pushes the limits of 
biosensing to enable rich sensing capabilities 
that are currently infeasible. More specifically, 
our designed transfer learning model consists 
of a visual landmark detection network 
and a biosignal neural network, enabling 
facial landmark detection knowledge to be 
transferred across modalities during training 
time. During testing, the well-trained 
biosignal network can directly localize 2D 
facial landmarks from the biosignals without 
any visual input. The recognized 2D facial 
landmarks will be further processed with a 
Kalman filter and fitted into a generalized 
3D head model to render continuous 3D 
facial animations.

SENSING FACIAL MUSCLE 
CONTRACTIONS VIA SINGLE-EAR 
BIOSENSORS
Facial muscles are striated skeletal muscles 
lying underneath the skin of the face and 
scalp to perform important functions for 
daily life, such as mastication and facial 
expressions. Whenever a muscle contracts, 
a burst of electric impulses is generated, 
which propagates through adjacent tissue and 
bone and can be recorded from neighboring 
skin areas. These bursts of electricity can 
be captured by surface electrodes using 
electromyography (EMG) measurements if 
the electrodes are placed close to or on top 
of the activated muscles. Different facial 
movements or expressions are produced 
by the contraction of a different set of 
facial muscles. This shows the potential of 
tracking entire facial movements and eye 
movements through sensing the contraction 
of corresponding facial muscles and the 
bioelectrical signals caused by eye movements.

SYSTEM OVERVIEW
As shown in Figure 2, the proposed BioFace-
3D has two phases: the training phase, in 
which our system uses the biosignals and 
visual information in a supervised manner to 
learn the real-time behavioral mapping from 
biosignal stream to facial landmarks, and 
the testing phase, in which the well-trained 

FIGURE 1. Illustration of the reconstructed 3D facial avatar with various facial expressions.
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head models can then be used for rendering 
a 3D facial animation that recovers the user’s 
facial movements.

WEARABLE IMPLEMENTATION
The BioFace-3D wearable device design is 
dictated by the most suitable facial locations 
of measurement electrodes. The reference 
electrodes are placed on a bony surface 
behind the ear such that those electrodes 
are sufficiently away from the facial muscle 
activity that the measurement electrodes 
capture. The earpiece provides slots for 
measurement, reference, and ground 
electrode placements at precise locations 
as illustrated in Figure 3. This earpiece 
is integrated with a headband that goes 
around the neck. We designed three sizes 
of prototypes that place the sensors in 
appropriate facial locations for three adult 
population groups: Large, Medium, and 
Small. For each of the sizes, we designed two 

variants based on which side the earpiece is 
present. This allows for a wearable device that 
suits a large population. This headpiece also 
houses a circuit box to contain the hardware. 
All of the components in the headset are 
manufactured by 3D printing of PLA to 
ensure that the prototype is lightweight.

PERFORMANCE EVALUATION
We recruited 16 participants to evaluate the 
performance of BioFace-3D. The partici-
pants were asked to sit in front of a camera 
(for training and ground truth recording 
purposes) and repeatedly perform seven uni-
versal expressions while wearing our imple-
mented BioFace-3D prototype. We use Mean 
Absolute Error (MAE), the absolute error 
between the reconstructed landmarks and 
groundtruth landmarks, which are converted 
from pixels to a physical unit (millimeter), and 
Normalized Mean Error (NME), the mean 
error between the groundtruth and recon-

Biosignal Stream in Training. BioFace-
3D collects two biosignal streams from the 
biosensors integrated into a single earpiece 
wearable. Each biosignal stream is first 
processed to obtain both EOG and EMG 
biosignal streams via bandpass filtering. We 
then apply biosignal frame segmentation to 
segment the filtered biosignal stream into 
frames, each corresponding to a re-sampled 
video frame. The signal segments are then 
fed into biosignal-based multi-input CNN 
network to reconstruct 2D facial landmarks. 
To transfer knowledge from the vision 
network into the biosignal domain, we utilize 
the Wing loss [8] to enhance the attention 
of the landmarks, which are important but 
less active (e.g., pupils) to help the biosignal 
network learn an accurate spatial mapping 
between biosignals and facial landmarks.

Biosignal Stream in Testing to Contin- 
uously Reconstruct 3D Faces. During 
testing, the biosignal stream first passes 
through the same pre-processing procedures 
in training. Then the fine-tuned biosignal 
network can continuously reconstruct 
2D facial landmarks from the biosignal 
stream without any visual input. To ensure 
a fluent 3D avatar animation, we then apply 
landmark smoothing via Kalman filter to 
stabilize the facial landmark movement 
across successive frames. Next, we generate 
3D facial animation from the stabilized 
landmarks using FLAME (Faces Learned 
with an Articulated Model and Expressions) 
model [9]. The generated sequence of fitted 

FIGURE 2. BioFace-3D system overview.

FIGURE 3. BioFace-3D prototype.
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structed landmark coordinates, normalized by 
the interocular distance, as evaluation metrics. 

Figure 4 (a) illustrates the average 
MAE & NME and corresponding standard 
deviations for all the 53 facial landmarks 
of each participant. We observe that all the 
participants can achieve comparable low 
errors. Specifically, BioFace-3D obtains an 
average of 1.85 mm MAE and 3.38% NME 
with average standard deviations of 0.99 
mm and 0.90%, respectively, indicating 
that mm-level accuracy could be achieved 
in our system. Among all the participants, 
U12 achieves the best reconstruction results 
with only 1.29 mm MAE and 2.45% NME, 
while U7 has the largest error (i.e., 2.54 mm 
MAE). Figure 4 (b) depicts the Cumula-
tive Density Function (CDF) of the MAE 
errors for each individual participant as 
well as cross-participant cases. 80% of the 
reconstructed landmarks have a low MAE of 
<2.66 mm, which demonstrates the promising 
capability of BioFace-3D in tracking human 
2D facial landmarks. Our rendered facial 
animation samples can be found at [10]. We 
can observe that BioFace3D is able to capture 
the user’s facial gestures from biosignals in 
a continuous manner and further render a 
smooth 3D facial animation that includes  
all of the facial changes.

CONCLUSION
We propose BioFace-3D, the first single-
earpiece lightweight biosensing system for 
continuous 2D facial landmarks tracking 
and 3D facial animation rendering. BioFace3D  
can accurately track major facial landmarks 
in a continuous manner with mm-level 
error. The rendered 3D facial animations are 
smooth, continuous, and highly consistent 
with the real human facial movements, 
showing the system’s promising capability. n
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FIGURE 4. Performance of continuous facial 
landmark tracking for each participant.  
(Top) Per-participant landmark tracking error.  
(Bottom) MAE CDF for each participant.
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